Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 143, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937802

RESUMO

BACKGROUND: The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS: We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS: Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.


Assuntos
Elementos de DNA Transponíveis , Hematopoese , Células-Tronco Hematopoéticas , Análise de Célula Única , Animais , Elementos de DNA Transponíveis/genética , Análise de Célula Única/métodos , Camundongos , Hematopoese/genética , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais/metabolismo
2.
Sci Data ; 10(1): 851, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040715

RESUMO

Human aging is a natural and inevitable biological process that leads to an increased risk of aging-related diseases. Developing anti-aging therapies for aging-related diseases requires a comprehensive understanding of the mechanisms and effects of aging and longevity from a multi-modal and multi-faceted perspective. However, most of the relevant knowledge is scattered in the biomedical literature, the volume of which reached 36 million in PubMed. Here, we presented HALD, a text mining-based human aging and longevity dataset of the biomedical knowledge graph from all published literature related to human aging and longevity in PubMed. HALD integrated multiple state-of-the-art natural language processing (NLP) techniques to improve the accuracy and coverage of the knowledge graph for precision gerontology and geroscience analyses. Up to September 2023, HALD had contained 12,227 entities in 10 types (gene, RNA, protein, carbohydrate, lipid, peptide, pharmaceutical preparations, toxin, mutation, and disease), 115,522 relations, 1,855 aging biomarkers, and 525 longevity biomarkers from 339,918 biomedical articles in PubMed. HALD is available at https://bis.zju.edu.cn/hald .


Assuntos
Envelhecimento , Geriatria , Longevidade , Humanos , Biomarcadores , Gerociência , Reconhecimento Automatizado de Padrão
3.
Hortic Res ; 10(11): uhad196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023476

RESUMO

Cornus wilsoniana W. is a woody oil plant with high oil content and strong hypolipidemic effects, making it a valuable species for medicinal, landscaping, and ecological purposes in China. To advance genetic research on this species, we employed PacBio together with Hi-C data to create a draft genome assembly for C. wilsoniana. Based on an 11-chromosome anchored chromosome-level assembly, the estimated genome size was determined to be 843.51 Mb. The N50 contig size and N50 scaffold size were calculated to be 4.49 and 78.00 Mb, respectively. Furthermore, 30 474 protein-coding genes were annotated. Comparative genomics analysis revealed that C. wilsoniana diverged from its closest species ~12.46 million years ago (Mya). Furthermore, the divergence between Cornaceae and Nyssaceae occurred >62.22 Mya. We also found evidence of whole-genome duplication events and whole-genome triplication γ, occurring at ~44.90 and 115.86 Mya. We further inferred the origins of chromosomes, which sheds light on the complex evolutionary history of the karyotype of C. wilsoniana. Through transcriptional and metabolic analysis, we identified two FAD2 homologous genes that may play a crucial role in controlling the oleic to linoleic acid ratio. We further investigated the correlation between metabolites and genes and identified 33 MADS-TF homologous genes that may affect flower morphology in C. wilsoniana. Overall, this study lays the groundwork for future research aimed at identifying the genetic basis of crucial traits in C. wilsoniana.

4.
J Integr Bioinform ; 20(4)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486120

RESUMO

Crop plant breeding involves selecting and developing new plant varieties with desirable traits such as increased yield, improved disease resistance, and enhanced nutritional value. With the development of high-throughput technologies, such as genomics, transcriptomics, and metabolomics, crop breeding has entered a new era. However, to effectively use these technologies, integration of multi-omics data from different databases is required. Integration of omics data provides a comprehensive understanding of the biological processes underlying plant traits and their interactions. This review highlights the importance of integrating omics databases in crop plant breeding, discusses available omics data and databases, describes integration challenges, and highlights recent developments and potential benefits. Taken together, the integration of omics databases is a critical step towards enhancing crop plant breeding and improving global food security.


Assuntos
Genômica , Melhoramento Vegetal , Plantas , Bases de Dados Factuais , Fenótipo
5.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409060

RESUMO

Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.


Assuntos
RNA Longo não Codificante , RNA não Traduzido , Biologia Computacional/métodos , Plantas/genética , Plantas/metabolismo , RNA Longo não Codificante/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA