Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5245, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475396

RESUMO

State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.


Assuntos
Eletrodos Implantados , Eletrofisiologia/métodos , Espaço Extracelular/fisiologia , Silício/química , Potenciais de Ação , Animais , Encéfalo/fisiologia , Eletrofisiologia/instrumentação , Desenho de Equipamento , Camundongos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
2.
Appl Phys Lett ; 110(7): 073704, 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28289314

RESUMO

Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (∼250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

3.
PLoS One ; 9(1): e86734, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489780

RESUMO

Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Ácido Niflúmico/metabolismo , Animais , Anoctamina-1 , Bário/metabolismo , Ligação Competitiva , Cátions Bivalentes , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Magnésio/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Ácido Niflúmico/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
J Biophotonics ; 7(8): 647-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23963649

RESUMO

The physiological functions of erythrocytes depend critically on their morphology, deformability, and aggregation capability in response to external physical and chemical stimuli. The dynamic deformability can be described in terms of their viscoelasticity. We applied jumping optical tweezers to trap and stretch individual red blood cells (RBCs) to characterize its viscoelasticity in terms of the Young's modulus and viscosity by analyzing the experimental data of dynamic deformation using a 2-parameter Kelvin solid model. The effects of three chemical agents (N -ethylmaleimide, Chymotrypsin, and Hydrogen peroxide) on RBC's mechanical properties were studied by comparing the Young's modulus and viscosity of RBCs with and without these chemical treatments. Although the effects of each of these chemicals on the molecular structures of RBC may not be exclusive, based on the dominant effect of each chemical, we attempted to dissect the main contributions of different constituents of the RBC membrane to its viscosity and elasticity.


Assuntos
Quimotripsina/farmacologia , Elasticidade/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Etilmaleimida/farmacologia , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Pinças Ópticas , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/citologia , Humanos , Viscosidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA