Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 5973-5979, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665518

RESUMO

Supramolecular engineering is exceptionally appealing in the design of functional materials, and J-aggregates resulting from noncovalent interactions offer intriguing features. However, building J-aggregation platforms remains a significant challenge. Herein, we report 3,5-dithienyl Aza-BODIPYs with a donor-acceptor-donor (D-A-D) architecture as the first charge transfer (CT)-coupled J-aggregation BODIPY-type platform. The core acceptor moieties in one molecule interact with donor units in neighboring molecules to generate slip-stacked packing motifs, resulting in CT-coupled J-aggregation with a redshifted wavelength up to 886 nm and an absorption tail over 1100 nm. The J-aggregates show significant photoacoustic signals and high photothermal conversion efficiency of 66%. The results obtained in vivo show that the J-aggregates have the potential to be used for tumor photothermal ablation and photoacoustic imaging. This study not only demonstrates Aza-BODIPY with D-A-D as a novel CT-coupled J-aggregation platform for NIR phototherapy materials but also motivates further study on the design of J-aggregation.

2.
J Chem Theory Comput ; 20(9): 3626-3636, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626287

RESUMO

We present an efficient analytical energy gradient algorithm for the cluster-in-molecule resolution-of-identity second-order Møller-Plesset perturbation (CIM-RI-MP2) method based on the Lagrange multiplier method. Our algorithm independently constructs the Lagrangian formalism within each cluster, avoiding the solution of the coupled-perturbed Hartree-Fock (CPHF) equation for the whole system. Due to this feature, the computational cost of the CIM-RI-MP2 gradients is much lower than that of other local MP2 algorithms. Benchmark calculations of several molecules containing up to 312 atoms demonstrate the general applicability of our CIM-RI-MP2 gradient algorithm. The optimized structure of a 244-atom molecule using the CIM-RI-MP2 method with the cc-pVDZ basis set is in good agreement with the corresponding crystal structure. A single-point gradient calculation conducted for a molecular cage containing 972 atoms and 9612 basis functions takes 48 h on 25 nodes, utilizing a total of 600 CPU cores. The present CIM-RI-MP2 gradient program is applicable for obtaining the optimized geometries of large systems with hundreds of atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA