Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Geroscience ; 42(2): 515-526, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32206968

RESUMO

In vitro models of angiogenesis are valuable tools for understanding the underlying mechanisms of pathological conditions and for the preclinical evaluation of therapies. Our laboratory developed the rat mesentery culture model as a new tool for investigating mechanistic cell-cell interactions at specific locations across intact blood and lymphatic microvascular networks ex vivo. The objective of this study was to report a method for evaluating the effect of aging on human stem cell differentiation into pericytes during angiogenesis in cultured microvascular networks. DiI labeled exogenous stem cells were seeded onto harvested adult Wistar rat mesenteric tissues and cultured in alpha-MEM + 1% serum for up to 5 days according to four experimental groups: (1) adult human adipose-derived stem cells (hASCs), (2) aged hASCs, (3) adult human bone marrow-derived stem cells (hBMSCs), and (4) aged hBMSCs. Angiogenesis per experimental group was supported by observation of increased vessel density and capillary sprouting. For each tissue per experimental group, a subset of cells was observed in typical pericyte location wrapped along blood vessels. Stem cell differentiation into pericytes was supported by the adoption of elongated pericyte morphology along endothelial cells and positive NG2 labeling. The percentage of cells in pericyte locations was not significantly different across the experimental groups, suggesting that aged mesenchymal stem cells are able to retain their differentiation capacity. Our results showcase an application of the rat mesentery culture model for aging research and the evaluation of stem cell fate within intact microvascular networks.


Assuntos
Envelhecimento , Células Endoteliais , Neovascularização Fisiológica , Células-Tronco , Animais , Diferenciação Celular , Microvasos , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos
2.
Microcirculation ; 25(8): e12502, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178505

RESUMO

OBJECTIVE: Motivated by observations of mesenteries harvested from mice treated with tamoxifen dissolved in oil for inducible gene mutation studies, the objective of this study was to demonstrate that microvascular growth can be induced in the avascular mouse mesentery tissue. METHODS: C57BL/6 mice were administered an IP injection for five consecutive days of: saline, sunflower oil, tamoxifen dissolved in sunflower oil, corn oil, or peanut oil. RESULTS: Twenty-one days post-injection, zero tissues from saline group contained branching microvascular networks. In contrast, all tissues from the three oils and tamoxifen groups contained vascular networks with arterioles, venules, and capillaries. Smooth muscle cells and pericytes were present in their expected locations and wrapping morphologies. Significant increases in vascularized tissue area and vascular density were observed when compared to saline group, but sunflower oil and tamoxifen group were not significantly different. Vascularized tissues also contained LYVE-1-positive and Prox1-positive lymphatic networks, indicating that lymphangiogenesis was stimulated. When comparing the different oils, vascularized tissue area and vascular density of sunflower oil were significantly higher than corn and peanut oils. CONCLUSIONS: These results provide novel evidence supporting that induction of microvascular network growth into the normally avascular mouse mesentery is possible.


Assuntos
Mesentério/irrigação sanguínea , Microvasos/efeitos dos fármacos , Óleos de Plantas/farmacologia , Tamoxifeno/farmacologia , Animais , Linfangiogênese , Mesentério/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/crescimento & desenvolvimento , Neovascularização Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA