RESUMO
INTRODUCTION: This study aims to compare the properties of currently available intra-articular hyaluronate (IA-HA) products widely available in the USA to those of healthy knee synovial fluid with respect to their bulk rheological properties. We hypothesize that products would have differing rheological properties, with some more closely resembling the properties and physiological aspects of healthy joint fluid HA. METHODS: We obtained reported HA product molecular weights, as well as measurements of the presence of cross-linking, zero shear rate viscosity, shear thinning ratio, and crossover frequency for the following IA-HA products available in the USA: Euflexxa®, Orthovisc®, Supartz®, Monovisc®, Synvisc®, Synvisc-One®, Gel-One®, and Hyalgan®. RESULTS: Differences were seen between the study products across all of the investigated parameters. Hyalgan, Supartz, Orthovisc, and Euflexxa had a linear chain structure, while Synvisc, Synvisc-One, and Monovisc were cross-linked in structure. Molecular weight, shear rates, and crossover frequencies ranged widely across tested products, with values ranging from below to above those reported for healthy knee synovial fluid HA. When compared to healthy knee parameter values reported within the current literature, observed parameters for Euflexxa and Orthovisc were typically seen to be the most similar to healthy knee synovial fluid. When comparing Euflexxa and Orthovisc directly, Euflexxa was more often similar to the properties of healthy knee synovial fluid with respect to the observed parameters of molecular structure, shear rates, and crossover frequency. CONCLUSION: Available IA-HA products vary with respect to molecular weight, presence of cross-linking, shear rate dependency of viscosity, and crossover frequency. Since IA-HA treatment for osteoarthritis aims to restore synovial fluid back to original HA property characteristics, using HA supplements resembling healthy synovial fluid is a logical approach. Our findings demonstrate that Euflexxa is the most similar to healthy synovial fluid with respect to molecular structure, shear rates, and crossover frequency. FUNDING: Ferring Pharmaceuticals, Inc.