Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
2.
Nature ; 617(7960): 417-425, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138078

RESUMO

The κ-opioid receptor (KOR) represents a highly desirable therapeutic target for treating not only pain but also addiction and affective disorders1. However, the development of KOR analgesics has been hindered by the associated hallucinogenic side effects2. The initiation of KOR signalling requires the Gi/o-family proteins including the conventional (Gi1, Gi2, Gi3, GoA and GoB) and nonconventional (Gz and Gg) subtypes. How hallucinogens exert their actions through KOR and how KOR determines G-protein subtype selectivity are not well understood. Here we determined the active-state structures of KOR in a complex with multiple G-protein heterotrimers-Gi1, GoA, Gz and Gg-using cryo-electron microscopy. The KOR-G-protein complexes are bound to hallucinogenic salvinorins or highly selective KOR agonists. Comparisons of these structures reveal molecular determinants critical for KOR-G-protein interactions as well as key elements governing Gi/o-family subtype selectivity and KOR ligand selectivity. Furthermore, the four G-protein subtypes display an intrinsically different binding affinity and allosteric activity on agonist binding at KOR. These results provide insights into the actions of opioids and G-protein-coupling specificity at KOR and establish a foundation to examine the therapeutic potential of pathway-selective agonists of KOR.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP , Ligantes , Receptores Opioides kappa , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/ultraestrutura , Transdução de Sinais , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Especificidade por Substrato , Regulação Alostérica/efeitos dos fármacos , Alucinógenos/metabolismo , Alucinógenos/farmacologia
3.
Neuron ; 110(19): 3154-3167.e7, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36087581

RESUMO

Serotonin (5-hydroxytryptamine [5-HT]) 5-HT2-family receptors represent essential targets for lysergic acid diethylamide (LSD) and all other psychedelic drugs. Although the primary psychedelic drug effects are mediated by the 5-HT2A serotonin receptor (HTR2A), the 5-HT2B serotonin receptor (HTR2B) has been used as a model receptor to study the activation mechanisms of psychedelic drugs due to its high expression and similarity to HTR2A. In this study, we determined the cryo-EM structures of LSD-bound HTR2B in the transducer-free, Gq-protein-coupled, and ß-arrestin-1-coupled states. These structures provide distinct signaling snapshots of LSD's action, ranging from the transducer-free, partially active state to the transducer-coupled, fully active states. Insights from this study will both provide comprehensive molecular insights into the signaling mechanisms of the prototypical psychedelic LSD and accelerate the discovery of novel psychedelic drugs.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Alucinógenos/metabolismo , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Receptores de Serotonina , Serotonina , beta-Arrestinas/metabolismo
4.
J Neurochem ; 162(1): 7-8, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35699130

RESUMO

Psychedelics are a relatively recent field of research that had not gained much support half a century ago, yet it developed into a much acknowledged, highly relevant field that extends to many people's lives. Psychedelics have demonstrated profound and durable therapeutic potential for the treatment of several psychiatric disorders including depression, anxiety, and substance use disorders, among others. In this special issue, basic science of psychedelics is reviewed with respect to fundamental cellular, molecular, and genetic mechanisms, all the way up to the human systems level with clinical reviews. We hope the articles, authored by leading scientists in their field, will help to understand better the role of the serotonin 5-HT2A receptor in particular in healthy and diseased brain function.


Assuntos
Alucinógenos , Neuroquímica , Transtornos Relacionados ao Uso de Substâncias , Ansiedade , Alucinógenos/uso terapêutico , Humanos
5.
Front Psychiatry ; 13: 863088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401275

RESUMO

At first glance, it appears there is little difference between the molecular structures of methylenedioxymethamphetamine (MDMA), which has an N-methyl attached to its amino group, and methylenedioxyamphetamine (MDA), a primary amine that is recognized to have hallucinogenic activity. It is known from studies with other hallucinogenic amphetamines that N-methylation of hallucinogenic amphetamines attenuates or abolishes hallucinogenic activity. Nevertheless, MDMA is biologically active and has a potency only slightly less than its MDA parent. Importantly, it is the Ievo-isomer of hallucinogenic phenethylamines that is more biologically active, whereas it is the dextro isomer of MDMA that is more active. This reversal of stereochemistry for the activity of two very closely related molecules is a very powerful clue that their mechanisms of action differ. Finally, extension of the alpha-methyl of hallucinogenic amphetamines to an alpha-ethyl moiety completely abolishes their hallucinogenic activity. Ultimately, we extended the alpha-methyl group of MDMA to an alpha-ethyl to afford a molecule we named (N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB) that retained significant MDMA-like psychoactivity. Hence, there are three structural features that distinguish MDMA from the hallucinogenic amphetamines: (1) the N-methyl on the basic nitrogen, (2) the reversal of stereochemistry and, (3) tolerance of an alpha-ethyl moiety as contrasted with the alpha-methyl of hallucinogenic phenethylamines. Clearly, MDMA is distinct from classical hallucinogenic phenethylamines in its structure, and its psychopharmacology is also unique. Thus, in 1986 I proposed the name "Entactogen" for the pharmacological class of drugs that includes 3,4-methylenedioxymethamphetamine (MDMA) and other substances with a similar psychopharmacological effect. The name is derived from roots that indicate that entactogens produce a "touching within." Rather than having significant psychostimulant, or hallucinogenic effects, MDMA powerfully promotes affiliative social behavior, has acute anxiolytic effects, and can lead to profound states of introspection and personal reflection. Its mechanism of action is now established as involving transport of MDMA by the neuronal serotonin reuptake carrier followed by carrier-mediated release of stored neuronal serotonin.

6.
Pharmacopsychiatry ; 54(4): 151-166, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33285579

RESUMO

Initial interest in the value of psychedelic drugs ("psychotomimetics") in psychiatry began in the early 20th century, with explorations of the possibility that mescaline or peyote could produce psychosis-like effects. Over time, interest was focused on whether the effects of psychedelics could inform as to the underlying basis for psychiatric disorders. As research continued, and especially after the discovery of LSD in 1943, increasing interest in a role for psychedelics as adjuncts to psychotherapy began to evolve and became the major focus of work with psychedelics up to the present day.


Assuntos
Alucinógenos , Psiquiatria , Transtornos Psicóticos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Psicoterapia , Transtornos Psicóticos/tratamento farmacológico
7.
Cell ; 182(6): 1574-1588.e19, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946782

RESUMO

Hallucinogens like lysergic acid diethylamide (LSD), psilocybin, and substituted N-benzyl phenylalkylamines are widely used recreationally with psilocybin being considered as a therapeutic for many neuropsychiatric disorders including depression, anxiety, and substance abuse. How psychedelics mediate their actions-both therapeutic and hallucinogenic-are not understood, although activation of the 5-HT2A serotonin receptor (HTR2A) is key. To gain molecular insights into psychedelic actions, we determined the active-state structure of HTR2A bound to 25-CN-NBOH-a prototypical hallucinogen-in complex with an engineered Gαq heterotrimer by cryoelectron microscopy (cryo-EM). We also obtained the X-ray crystal structures of HTR2A complexed with the arrestin-biased ligand LSD or the inverse agonist methiothepin. Comparisons of these structures reveal determinants responsible for HTR2A-Gαq protein interactions as well as the conformational rearrangements involved in active-state transitions. Given the potential therapeutic actions of hallucinogens, these findings could accelerate the discovery of more selective drugs for the treatment of a variety of neuropsychiatric disorders.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Alucinógenos/química , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Células HEK293 , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Ligantes , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Metiotepina/química , Metiotepina/metabolismo , Modelos Químicos , Mutação , Conformação Proteica em alfa-Hélice , Receptor 5-HT2A de Serotonina/genética , Proteínas Recombinantes , Serotonina/metabolismo , Spodoptera
8.
J Antibiot (Tokyo) ; 73(10): 679-686, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32398764

RESUMO

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is an indole-based secondary metabolite produced by numerous species of mushrooms. South American Aztec Indians referred to them as teonanacatl, meaning "god's flesh," and they were used in religious and healing rituals. Spanish missionaries in the 1500s attempted to destroy all records and evidence of the use of these mushrooms. Nevertheless, a 16th century Spanish Franciscan friar and historian mentioned teonanacatl in his extensive writings, intriguing 20th century ethnopharmacologists and leading to a decades-long search for the identity of teonanacatl. Their search ultimately led to a 1957 photo-essay in a popular magazine, describing for the Western world the use of these mushrooms. Specimens were ultimately obtained, and their active principle identified and chemically synthesized. In the past 10-15 years several FDA-approved clinical studies have indicated potential medical value for psilocybin-assisted psychotherapy in treating depression, anxiety, and certain addictions. At present, assuming that the early clinical studies can be validated by larger studies, psilocybin is poised to make a significant impact on treatments available to psychiatric medicine.


Assuntos
Alucinógenos/história , Psilocibina/história , Agaricales/química , Alucinógenos/isolamento & purificação , História do Século XV , História do Século XX , Humanos , Psilocibina/análogos & derivados , Psilocibina/biossíntese , Psilocibina/síntese química , Psilocibina/isolamento & purificação
9.
J Psychopharmacol ; 33(9): 1039-1057, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31303095

RESUMO

BACKGROUND: In the past few years, the issue of 'microdosing' psychedelics has been openly discussed in the public arena where claims have been made about their positive effect on mood state and cognitive processes such as concentration. However, there are very few scientific studies that have specifically addressed this issue, and there is no agreed scientific consensus on what microdosing is. AIM: This critique paper is designed to address questions that need to be answered by future scientific studies and to offer guidelines for these studies. APPROACH: Owing to its proximity for a possible approval in clinical use and short-lasting pharmacokinetics, our focus is predominantly on psilocybin. Psilocybin is allegedly, next to lysergic acid diethylamide (LSD), one of the two most frequently used psychedelics to microdose. Where relevant and available, data for other psychedelic drugs are also mentioned. CONCLUSION: It is concluded that while most anecdotal reports focus on the positive experiences with microdosing, future research should also focus on potential risks of (multiple) administrations of a psychedelic in low doses. To that end, (pre)clinical studies including biological (e.g. heart rate, receptor turnover and occupancy) as well as cognitive (e.g. memory, attention) parameters have to be conducted and will shed light on the potential negative consequences microdosing could have.


Assuntos
Alucinógenos/administração & dosagem , Alucinógenos/efeitos adversos , Psilocibina/administração & dosagem , Psilocibina/efeitos adversos , Animais , Atenção/efeitos dos fármacos , Humanos , Memória/efeitos dos fármacos
10.
Psychopharmacology (Berl) ; 236(2): 799-808, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298278

RESUMO

RATIONALE: The lysergamide lysergic acid diethylamide (LSD) is a prototypical classical hallucinogen with remarkably high potency. LSD remains a popular recreational drug but is also becoming an important research tool for medical and neuroscience studies. Recently, several lysergamides that are close structural analogs of LSD have been sold as recreational drugs, which suggests that further studies are needed to explore the pharmacological properties of these compounds. OBJECTIVE: In this present investigation, another LSD congener, N-ethyl-N-cyclopropyl lysergamide (ECPLA), which to date has not been marketed as a recreational substance, was evaluated for its pharmacological features relative to those previously reported for LSD. The experiments focused on interactions with the 5-HT2A receptor, which is responsible for mediating the psychedelic effects of LSD and other hallucinogens. METHODS: Competitive binding assays were performed to measure the affinity of ECPLA for 27 monoamine receptors. The ability of ECPLA to activate human 5-HT2 receptor subtypes was assessed using calcium mobilization assays. Head twitch response (HTR) studies were conducted in C57BL/6J mice to determine whether ECPLA activates 5-HT2A receptors in vivo. Two other N-alkyl substituted lysergamides, N-methyl-N-isopropyl lysergamide (MIPLA) and N-methyl-N-propyl lysergamide (LAMPA), were also tested in the HTR paradigm for comparative purposes. RESULTS: ECPLA has high affinity for most serotonin receptors, α2-adrenoceptors, and D2-like dopamine receptors. Additionally, ECPLA was found to be a potent, highly efficacious 5-HT2A agonist for Gq-mediated calcium flux. Treatment with ECPLA induced head twitches in mice with a median effective dose (ED50) of 317.2 nmol/kg (IP), which is ~ 40% of the potency observed previously for LSD. LAMPA (ED50 = 358.3 nmol/kg) was virtually equipotent with ECPLA in the HTR paradigm whereas MIPLA (ED50 = 421.7 nmol/kg) was slightly less potent than ECPLA. CONCLUSIONS: These findings demonstrate that the pharmacological properties of ECPLA, MIPLA, and LAMPA are reminiscent of LSD and other lysergamide hallucinogens.


Assuntos
Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/análogos & derivados , Dietilamida do Ácido Lisérgico/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Relação Dose-Resposta a Droga , Alucinógenos/química , Alucinógenos/metabolismo , Humanos , Drogas Ilícitas/química , Drogas Ilícitas/metabolismo , Drogas Ilícitas/farmacologia , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 5-HT2A de Serotonina , Receptores de Serotonina/metabolismo
11.
ACS Chem Neurosci ; 10(1): 143-154, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30252437

RESUMO

Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Alucinógenos/farmacologia , Modelos Animais , Antagonistas Muscarínicos/farmacologia , Animais , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central/toxicidade , Delírio/induzido quimicamente , Delírio/metabolismo , Delírio/psicologia , Alucinógenos/toxicidade , Humanos , Antagonistas Muscarínicos/toxicidade
12.
Psychopharmacology (Berl) ; 236(2): 809, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30443792

RESUMO

The author of this article wanted to change the Acknowledgments section to: These studies were supported by an award from NIDA (R01 DA041336), as well as by the Veteran's Administration VISN 22 Mental Illness Research, Education, and Clinical Center. Receptor binding and functional data were generously.

13.
J Psychopharmacol ; 32(7): 821-822, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29991342
14.
ACS Chem Neurosci ; 9(10): 2331-2343, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29461039

RESUMO

Lysergic acid diethylamide (LSD) is one of the most potent psychoactive agents known, producing dramatic alterations of consciousness after submilligram (≥20 µg) oral doses. Following the accidental discovery of its potent psychoactive effects in 1943, it was supplied by Sandoz Laboratories as an experimental drug that might be useful as an adjunct for psychotherapy, or to give psychiatrists insight into the mental processes in their patients. The finding of serotonin in the mammalian brain in 1953, and its structural resemblance to LSD, quickly led to ideas that serotonin in the brain might be involved in mental disorders, initiating rapid research interest in the neurochemistry of serotonin. LSD proved to be physiologically very safe and nonaddictive, with a very low incidence of adverse events when used in controlled experiments. Widely hailed by psychiatry as a breakthrough in the 1950s and early 1960s, clinical research with LSD ended by about 1970, when it was formally placed into Schedule 1 of the Controlled Substances Act of 1970 following its growing popularity as a recreational drug. Within the past 5 years, clinical research with LSD has begun in Europe, but there has been none in the United States. LSD is proving to be a powerful tool to help understand brain dynamics when combined with modern brain imaging methods. It remains to be seen whether therapeutic value for LSD can be confirmed in controlled clinical trials, but promising results have been obtained in small pilot trials of depression, anxiety, and addictions using psilocybin, a related psychedelic molecule.


Assuntos
Alucinógenos/síntese química , Alucinógenos/história , Dietilamida do Ácido Lisérgico/síntese química , Dietilamida do Ácido Lisérgico/história , Transtornos de Ansiedade/terapia , Transtorno Depressivo/terapia , Controle de Medicamentos e Entorpecentes , Europa (Continente) , Alucinógenos/química , Alucinógenos/uso terapêutico , História do Século XX , História do Século XXI , Humanos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/uso terapêutico , Psicoterapia , Pesquisa , Transtornos Relacionados ao Uso de Substâncias/terapia , Estados Unidos
15.
Forensic Sci Int ; 284: 141-145, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29408722

RESUMO

LSD (lysergic acid diethylamide) was discovered almost 75 years ago, and has been the object of episodic controversy since then. While initially explored as an adjunctive psychiatric treatment, its recreational use by the general public has persisted and on occasion has been associated with adverse outcomes, particularly when the drug is taken under suboptimal conditions. LSD's potential to cause psychological disturbance (bad trips) has been long understood, and has rarely been associated with accidental deaths and suicide. From a physiological perspective, however, LSD is known to be non-toxic and medically safe when taken at standard dosages (50-200µg). The scientific literature, along with recent media reports, have unfortunately implicated "LSD toxicity" in five cases of sudden death. On close examination, however, two of these fatalities were associated with ingestion of massive overdoses, two were evidently in individuals with psychological agitation after taking standard doses of LSD who were then placed in maximal physical restraint positions (hogtied) by police, following which they suffered fatal cardiovascular collapse, and one case of extreme hyperthermia leading to death that was likely caused by a drug substituted for LSD with strong effects on central nervous system temperature regulation (e.g. 25i-NBOMe). Given the renewed interest in the therapeutic potential of LSD and other psychedelic drugs, it is important that an accurate understanding be established of the true causes of such fatalities that had been erroneously attributed to LSD toxicity, including massive overdoses, excessive physical restraints, and psychoactive drugs other than LSD.


Assuntos
Alucinógenos/toxicidade , Dietilamida do Ácido Lisérgico/toxicidade , Acatisia Induzida por Medicamentos/etiologia , Asfixia , Delírio/induzido quimicamente , Overdose de Drogas , Toxicologia Forense , Humanos , Postura , Restrição Física , Transtornos Relacionados ao Uso de Substâncias/complicações
16.
Curr Top Behav Neurosci ; 36: 1-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28401524

RESUMO

This chapter will summarize structure-activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.


Assuntos
Alucinógenos/química , Alucinógenos/farmacologia , Animais , Ergolinas/química , Ergolinas/farmacologia , Humanos , Fenetilaminas/química , Fenetilaminas/farmacologia , Receptor 5-HT2A de Serotonina , Relação Estrutura-Atividade , Triptaminas/química , Triptaminas/farmacologia
17.
Drug Test Anal ; 10(2): 310-322, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28585392

RESUMO

Lysergic acid diethylamide (LSD) is perhaps one of the best-known psychoactive substances and many structural modifications of this prototypical lysergamide have been investigated. Several lysergamides were recently encountered as 'research chemicals' or new psychoactive substances (NPS). Although lysergic acid morpholide (LSM-775) appeared on the NPS market in 2013, there is disagreement in the literature regarding the potency and psychoactive properties of LSM-775 in humans. The present investigation attempts to address the gap of information that exists regarding the analytical profile and pharmacological effects of LSM-775. A powdered sample of LSM-775 was characterized by X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), high mass accuracy electrospray MS/MS, high performance liquid chromatography (HPLC) diode array detection, HPLC quadrupole MS, and GC solid-state infrared analysis. Screening for receptor affinity and functional efficacy revealed that LSM-775 acts as a nonselective agonist at 5-HT1A and 5-HT2A receptors. Head twitch studies were conducted in C57BL/6J mice to determine whether LSM-775 activates 5-HT2A receptors and produces hallucinogen-like effects in vivo. LSM-775 did not induce the head twitch response unless 5-HT1A receptors were blocked by pretreatment with the antagonist WAY-100,635 (1 mg/kg, subcutaneous). These findings suggest that 5-HT1A activation by LSM-775 masks its ability to induce the head twitch response, which is potentially consistent with reports in the literature indicating that LSM-775 is only capable of producing weak LSD-like effects in humans.


Assuntos
Alucinógenos/química , Dietilamida do Ácido Lisérgico/análogos & derivados , Dietilamida do Ácido Lisérgico/farmacologia , Ácido Lisérgico/análise , Ácido Lisérgico/química , Piperazinas/química , Piridinas/química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/química , Animais , Humanos , Dietilamida do Ácido Lisérgico/análise , Dietilamida do Ácido Lisérgico/química , Camundongos , Receptor 5-HT1A de Serotonina , Espectrometria de Massas em Tandem
18.
J Psychopharmacol ; 32(1): 30-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095071

RESUMO

The pineal gland has a romantic history, from pharaonic Egypt, where it was equated with the eye of Horus, through various religious traditions, where it was considered the seat of the soul, the third eye, etc. Recent incarnations of these notions have suggested that N,N-dimethyltryptamine is secreted by the pineal gland at birth, during dreaming, and at near death to produce out of body experiences. Scientific evidence, however, is not consistent with these ideas. The adult pineal gland weighs less than 0.2 g, and its principal function is to produce about 30 µg per day of melatonin, a hormone that regulates circadian rhythm through very high affinity interactions with melatonin receptors. It is clear that very minute concentrations of N,N-dimethyltryptamine have been detected in the brain, but they are not sufficient to produce psychoactive effects. Alternative explanations are presented to explain how stress and near death can produce altered states of consciousness without invoking the intermediacy of N,N-dimethyltryptamine.


Assuntos
N,N-Dimetiltriptamina/metabolismo , Glândula Pineal/metabolismo , Animais , Ritmo Circadiano/fisiologia , Humanos , Melatonina/metabolismo
19.
Trends Pharmacol Sci ; 38(11): 992-1005, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28947075

RESUMO

Psychedelic drugs, such as lysergic acid diethylamide (LSD), mescaline, and psilocybin, exert profound effects on brain and behavior. After decades of difficulties in studying these compounds, psychedelics are again being tested as potential treatments for intractable biomedical disorders. Preclinical research of psychedelics complements human neuroimaging studies and pilot clinical trials, suggesting these compounds as promising treatments for addiction, depression, anxiety, and other conditions. However, many questions regarding the mechanisms of action, safety, and efficacy of psychedelics remain. Here, we summarize recent preclinical and clinical data in this field, discuss their pharmacological mechanisms of action, and outline critical areas for future studies of psychedelic drugs, with the goal of maximizing the potential benefits of translational psychedelic biomedicine to patients.


Assuntos
Alucinógenos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Humanos , Relações Metafísicas Mente-Corpo/efeitos dos fármacos , Psicofisiologia
20.
Proc Natl Acad Sci U S A ; 114(22): 5595-5600, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28500275

RESUMO

Recently, an alternative theory concerning the method by which olfactory proteins are activated has garnered attention. This theory proposes that the activation of olfactory G protein-coupled receptors occurs by an inelastic electron tunneling mechanism that is mediated through the presence of an agonist with an appropriate vibrational state to accept the inelastic portion of the tunneling electron's energy. In a recent series of papers, some suggestive theoretical evidence has been offered that this theory may be applied to nonolfactory G protein-coupled receptors (GPCRs), including those associated with the central nervous system (CNS). [Chee HK, June OS (2013) Genomics Inform 11(4):282-288; Chee HK, et al. (2015) FEBS Lett 589(4):548-552; Oh SJ (2012) Genomics Inform 10(2):128-132]. Herein, we test the viability of this idea, both by receptor affinity and receptor activation measured by calcium flux. This test was performed using a pair of well-characterized agonists for members of the 5-HT2 class of serotonin receptors, 2,5-dimethoxy-4-iodoamphetamine (DOI) and N,N-dimethyllysergamide (DAM-57), and their respective deuterated isotopologues. No evidence was found that selective deuteration affected either the binding affinity or the activation by the selected ligands for the examined members of the 5-HT2 receptor class.


Assuntos
Anfetaminas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Olfato/fisiologia , Vibração , Ativação Enzimática/fisiologia , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA