Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202402413, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38478719

RESUMO

Existing modelling tools, developed to aid the design of efficient molecular wires and to better understand their charge-transport behaviour and mechanism, have limitations in accuracy and computational cost. Further research is required to develop faster and more precise methods that can yield information on how charge transport properties are impacted by changes in the chemical structure of a molecular wire. In this study, we report a clear semilogarithmic correlation between charge transport efficiency and nuclear magnetic resonance chemical shifts in multiple series of molecular wires, also accounting for the presence of chemical substituents. The NMR data was used to inform a simple tight-binding model that accurately captures the experimental single-molecule conductance values, especially useful in this case as more sophisticated density functional theory calculations fail due to inherent limitations. Our study demonstrates the potential of NMR spectroscopy as a valuable tool for characterising, rationalising, and gaining additional insights on the charge transport properties of single-molecule junctions.

2.
Cell Rep ; 42(5): 112447, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37141099

RESUMO

Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Mutação/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
3.
Prostate ; 83(11): 1001-1010, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150849

RESUMO

BACKGROUND: Locally recurrent prostate cancer following primary external beam radiotherapy without distant metastasis is a challenging problem, with no current consensus on the optimal management of these patients. Traditional whole-gland salvage treatments offered up to a 50% 5-year disease-free survival rate but with troubling levels of risk for significant complications. Recent progress in advanced imaging techniques has allowed a more accurate selection of patients with local-only recurrence and a selection of patients that may be suitable for newer partial-gland salvage treatments that may reduce late complications. METHODS: This article reviews advances in patient selection and provides an overview of whole- and partial-gland salvage results from selected recent meta-analyses, multi-institutional series, and studies from centers of excellence for these treatment approaches. RESULTS: Salvage radical prostatectomy produces 5-year relapse-free survival (RFS) rates in the 50%-60% range with severe gastrointestinal (GI) toxicity in < 2% but severe genitourinary (GU) toxicity in 15%-23% of patients. The whole-gland options of high and low dose rate brachytherapy and stereotactic body radiation therapy appear to offer similar 5-year control rates, with low severe GU and GI toxicity rates of 4%-8% and <2%, respectively. Cryotherapy and high-intensity focused ultrasound (HIFU) offer similar 5-year RFS rates but carry significant risks for severe GU and GI toxicity in the range of 10%-27% and <2%, respectively. Early results of partial-gland salvage techniques in selected patients appear promising, with 3-year RFS rates of 48%-72% and rare grade 3 toxicity. CONCLUSION: It is important to understand the relative effectiveness and risks of the various treatment options to effectively counsel patients who face this distressing clinical situation. Whole-gland salvage options offer the possibility of long-term control but with significant risks of severe toxicity. Emerging data for the partial-gland salvage options in appropriately selected patients may offer hope of reasonable control rates with reduced severe toxicity.


Assuntos
Braquiterapia , Neoplasias da Próstata , Masculino , Humanos , Recidiva Local de Neoplasia/terapia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/tratamento farmacológico , Braquiterapia/efeitos adversos , Braquiterapia/métodos , Próstata/patologia , Prostatectomia , Terapia de Salvação/métodos
4.
Phys Chem Chem Phys ; 25(10): 7176-7183, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36810584

RESUMO

The electrical properties of large area molecular devices consisting of gold nanoparticles (GNPs) sandwiched between a double layer of alkanedithiol linkers have been examined. These devices have been fabricated by a facile bottom-up assembly in which an alkanedithiol monolayer is first self-assembled on an underlying gold substrate followed by nanoparticle adsorption and then finally assembly of the top alkanedithiol layer. These devices are then sandwiched between the bottom gold substrates and a top eGaIn probe contact and current-voltage (I-V) curves recorded. Devices have been fabricated with 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol and 1,10-decanedithiol linkers. In all cases the electrical conductance of the double SAM junctions with GNPs is higher than the corresponding and much thinner single alkanedithiol SAM. Competing models for this enhanced conductance are discussed and it is suggested to have a topological origin arising from how the devices assemble or structure during the fabrication, which gives more efficient cross device electron transport pathways without the GNPs producing short circuits.

5.
Front Mol Neurosci ; 16: 1269387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169846

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases. To investigate this, we used PhosTag gel electrophoresis with purified proteins and found that PAK6 phosphorylates the PP2A regulatory subunit PPP2R2C at position S381. While S381 phosphorylation did not affect PP2A holoenzyme formation, a S381A phosphodead PPP2R2C showed impaired binding to LRRK2. Also, PAK6 kinase activity changed PPP2R2C subcellular localization in a S381 phosphorylation-dependent manner. Finally, PAK6-mediated dephosphorylation of LRRK2 was unaffected by phosphorylation of PPP2R2C at S381, suggesting that the previously reported mechanism whereby PAK6-mediated phosphorylation of 14-3-3 proteins promotes 14-3-3-LRRK2 complex dissociation and consequent exposure of LRRK2 phosphosites for dephosphorylation is dominant. Taken together, we conclude that PAK6-mediated phosphorylation of PPP2R2C influences the recruitment of PPP2R2C to the LRRK2 complex and PPP2R2C subcellular localization, pointing to an additional mechanism in the fine-tuning of LRRK2 phosphorylation.

7.
Sci Rep ; 12(1): 20250, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424421

RESUMO

Glucocorticoids are regularly used as biomarkers of relative health for individuals and populations. Around the Western Antarctic Peninsula (WAP), baleen whales have and continue to experience threats, including commercial harvest, prey limitations and habitat change driven by rapid warming, and increased human presence via ecotourism. Here, we measured demographic variation and differences across the foraging season in blubber cortisol levels of humpback whales (Megaptera novaeangliae) over two years around the WAP. Cortisol concentrations were determined from 305 biopsy samples of unique individuals. We found no significant difference in the cortisol concentration between male and female whales. However, we observed significant differences across demographic groups of females and a significant decrease in the population across the feeding season. We also assessed whether COVID-19-related reductions in tourism in 2021 along the WAP correlated with lower cortisol levels across the population. The decline in vessel presence in 2021 was associated with a significant decrease in humpback whale blubber cortisol concentrations at the population level. Our findings provide critical contextual data on how these hormones vary naturally in a population over time, show direct associations between cortisol levels and human presence, and will enable comparisons among species experiencing different levels of human disturbance.


Assuntos
COVID-19 , Jubarte , Humanos , Animais , Masculino , Feminino , Hidrocortisona , Regiões Antárticas , Estações do Ano
8.
R Soc Open Sci ; 9(11): 220724, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36397972

RESUMO

Antarctic minke whales (Balaenoptera bonaerensis, AMW) are an abundant, ice-dependent species susceptible to rapid climatic changes occurring in parts of the Antarctic. Here, we used remote biopsy samples and estimates of length derived from unoccupied aircraft system (UAS) to characterize for the first time the sex ratio, maturity, and pregnancy rates of AMWs around the Western Antarctic Peninsula (WAP). DNA profiling of 82 biopsy samples (2013-2020) identified 29 individual males and 40 individual females. Blubber progesterone levels indicated 59% of all sampled females were pregnant, irrespective of maturity. When corrected for sexual maturity, the median pregnancy rate was 92.3%, indicating that most mature females become pregnant each year. We measured 68 individuals by UAS (mean = 8.04 m) and estimated that 66.5% of females were mature. This study provides the first data on the demography of AMWs along the WAP and represents the first use of non-lethal approaches to studying this species. Furthermore, these results provide baselines against which future changes in population status can be assessed in this rapidly changing marine ecosystem.

9.
Eur J Med Chem ; 242: 114693, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049274

RESUMO

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are genetic predispositions for Parkinson's Disease, of which the G2019S (GS) missense mutation is the most common. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted the LRRK2 kinase, few have reached clinical trials. We recently reported on the discovery of a novel LRRK2 kinase inhibitor chemotype, 1H-pyrazole biaryl sulfonamides. Although both potent and selective GS-LRRK2 inhibitors, 1H-pyrazole biaryl sulfonamides are incapable of crossing the blood-brain barrier. Retaining the core 1H-pyrazole and focusing our efforts on a phenylsulfonamide bioisosteric replacement, we report the discovery and preliminary development of azaspirocyclic 1H-3,4,5-trisubstituted pyrazoles as potent and selective (>2000-fold) GS-LRRK2 kinase inhibitors capable of entering rodent brain. The compounds disclosed here present an excellent starting point for the development of more brain penetrant compounds.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
10.
ACS Med Chem Lett ; 13(6): 981-988, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707141

RESUMO

G2019S (GS) is the most prevalent mutation in the leucine rich repeat protein kinase 2 gene (LRRK2), a genetic predisposition that is common for Parkinson's disease, as well as for some forms of cancer, and is a shared risk allele for Crohn's disease. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted LRRK2 kinase, few have reached clinical development. We report the discovery and preliminary development of an entirely novel structural class of potent and selective GS-LRRK2 kinase inhibitors: biaryl-1H-pyrazoles.

11.
J Parkinsons Dis ; 12(5): 1423-1447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599495

RESUMO

BACKGROUND: Coding variation in the Leucine rich repeat kinase 2 gene linked to Parkinson's disease (PD) promotes enhanced activity of the encoded LRRK2 kinase, particularly with respect to autophosphorylation at S1292 and/or phosphorylation of the heterologous substrate RAB10. OBJECTIVE: To determine the inter-laboratory reliability of measurements of cellular LRRK2 kinase activity in the context of wildtype or mutant LRRK2 expression using published protocols. METHODS: Benchmark western blot assessments of phospho-LRRK2 and phospho-RAB10 were performed in parallel with in situ immunological approaches in HEK293T, mouse embryonic fibroblasts, and lymphoblastoid cell lines. Rat brain tissue, with or without adenovirus-mediated LRRK2 expression, and human brain tissues from subjects with or without PD, were also evaluated for LRRK2 kinase activity markers. RESULTS: Western blots were able to detect extracted LRRK2 activity in cells and tissue with pS1292-LRRK2 or pT73-RAB10 antibodies. However, while LRRK2 kinase signal could be detected at the cellular level with over-expressed mutant LRRK2 in cell lines, we were unable to demonstrate specific detection of endogenous cellular LRRK2 activity in cell culture models or tissues that we evaluated. CONCLUSION: Further development of reliable methods that can be deployed in multiple laboratories to measure endogenous LRRK2 activities are likely required, especially at cellular resolution.


Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Animais , Fibroblastos/metabolismo , Células HEK293 , Humanos , Leucina/genética , Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Reprodutibilidade dos Testes , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
13.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326469

RESUMO

The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson's disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2's heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Fosforilação/fisiologia , Transdução de Sinais
14.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266954

RESUMO

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL). Phosphorylation of LRRK2 Ser910/Ser935 within LRRK2 RL influences LRRK2's association with cytoplasmic 14-3-3 versus microtubule-bound TRIM1. Association with TRIM1 modulates LRRK2's interaction with Rab29 and prevents upregulation of LRRK2 kinase activity by Rab29 in an E3-ligase-dependent manner. Finally, TRIM1 rescues neurite outgrowth deficits caused by PD-driving mutant LRRK2 G2019S. Our data suggest that TRIM1 is a critical regulator of LRRK2, controlling its degradation, localization, binding partners, kinase activity, and cytotoxicity.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas Serina-Treonina Quinases , Proteínas com Motivo Tripartido , Citoesqueleto , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Associadas aos Microtúbulos , Microtúbulos , Mutação , Doença de Parkinson/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rab de Ligação ao GTP/metabolismo
15.
Eur J Med Chem ; 229: 114080, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992038

RESUMO

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Assuntos
Indazóis/síntese química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Animais , Encéfalo , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Indazóis/farmacocinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Pulmão , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação , Fármacos Neuroprotetores/farmacocinética , Fenótipo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Roedores , Relação Estrutura-Atividade
16.
Acta Oncol ; 61(4): 468-477, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34965846

RESUMO

BACKGROUND: To report 5- and 7-year outcomes after image-guided moderately accelerated hypofractionated proton therapy (AHPT) for prostate cancer. MATERIAL AND METHODS: We reviewed the first 582 prostate cancer patients enrolled on prospective outcomes tracking trial and treated with double-scattered moderately AHPT between 2008 and 2015. 269 patients had low-risk (LR) and 313 had intermediate-risk (IR) disease, including 149 with favorable intermediate-risk (FIR) and 164 with unfavorable intermediate-risk (UIR) disease. LR patients received a median 70.0GyRBE (2.5GyRBE/fraction) and IR patients received a median of 72.5 GyRBE. Seventeen patients (UIR, n = 12) received androgen deprivation therapy (ADT) for a median of 6 months. Toxicities were graded per the CTCAE, v4.0, and patient-reported quality-of-life data were reviewed. RESULTS: Median follow-up was 8.0 years (0.9-12.2). The 5- and 7-year rates of freedom from biochemical progression (FFBP) overall and in the LR and IR subsets, respectively, were 96.8/95.2%, 98.8/98.8%, and 95.0/91.9%. For the FIR and UIR subsets, they were 97.2/95.2% and 93.1/88.8%. Actuarial 5- and 7-year rates of late CTCAE, v4.0, grade 2 gastrointestinal (GI), grade 3 GI, and grade 3 genitourinary (GU) toxicities were 9.9%/11.2%, 1.4/1.4% and 1.3/2.1%, respectively. No grade ≥4 GI or GU toxicities occurred. The mean (standard deviation, SD) IPSS and EPIC Composite bowel function and bother scores were 7 (SD = 5), 97 (SD = 7), and 94 (SD = 6), respectively at baseline, 7 (SD = 5), 92 (SD = 13), and 92 (SD = 9) at the 5-year follow-up, and 7 (SD = 5), 93 (SD = 12), and 92 (SD = 10) at the 7-year follow-up. CONCLUSION: Image-guided AHPT 5- and 7-year outcomes show high efficacy, minimal physician-assessed toxicity, and excellent patient-reported outcomes in this cohort.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Antagonistas de Androgênios , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/terapia , Terapia com Prótons/efeitos adversos , Radioterapia Guiada por Imagem/efeitos adversos , Sistema Urogenital
17.
Int J Part Ther ; 8(2): 1-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722807

RESUMO

Proton therapy is a promising but controversial treatment in the management of prostate cancer. Despite its dosimetric advantages when compared with photon radiation therapy, its increased cost to patients and insurers has raised questions regarding its value. Multiple prospective and retrospective studies have been published documenting the efficacy and safety of proton therapy for patients with localized prostate cancer and for patients requiring adjuvant or salvage pelvic radiation after surgery. The Particle Therapy Co-Operative Group (PTCOG) Genitourinary Subcommittee intends to address current proton therapy indications, advantages, disadvantages, and cost effectiveness. We will also discuss the current landscape of clinical trials. This consensus report can be used to guide clinical practice and research directions.

18.
Peptides ; 146: 170641, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453985

RESUMO

The structural conservation and activity of the myosuppressin cardioinhibitory peptide across species suggests it plays an important role in physiology, yet much remains unknown regarding its signaling. We previously reported Drosophila melanogaster myosuppressin (dromyosuppressin, DMS; TDVDHVFLRF-NH2) decreases cardiac contractility through a G protein-coupled receptor, DMS-R2. Our study showed the DMS N-terminus amino acids influence its structure-activity relationship (SAR), yet how they act is not established. We predicted myosuppressin N-terminal amino acids played a role in signaling. Here, we tested our hypothesis in the beetle, Zophobas atratus, using a semi-isolated heart bioassay to explore SAR in a different Order and focus on cardiac signaling. We generated a series of myosuppressin truncated analogs by removing the N-terminal residue and measuring the activity of each structure on cardiac contractility. While DVDHVFLRF-NH2 decreased cardiac contractility, we found VDHVFLRF-NH2, DHVFLRF-NH2, and HVFLRF-NH2 increased activity. In contrast, VFLRF- NH2 decreased activity and FLRF-NH2 was inactive. Next, we analyzed molecular docking data and found the active truncated analogs interacted with the 3-6 lock in DMS-R2, the myosuppressin cardiac receptor, disrupting the salt bridge between H114 and E369, and K289 and Q372. Further, the docking results showed the inhibitory effect on contractility may be associated with contact to Y78, while the analogs that increased contractility lacked this interaction. The data from our study demonstrated N-terminal amino acids played a role in myosuppressin activity and signaling suggesting the cardiac receptor can be targeted by biased agonists. Our myosuppressin cardiac contractility data and predicted receptor interactions describe the presence of functional selectivity in a ligand-directed signaling pathway in heart.


Assuntos
Aminoácidos/farmacologia , Proteínas de Drosophila/metabolismo , Hormônios de Inseto/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Neuropeptídeos/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Hormônios de Inseto/química , Ligantes , Neuropeptídeos/química , Alinhamento de Sequência , Relação Estrutura-Atividade
19.
Neurobiol Dis ; 157: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144124

RESUMO

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Int J Part Ther ; 7(4): 52-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829073

RESUMO

PURPOSE: Postprostatectomy radiation improves disease control, but limited data exist regarding outcomes, toxicities, and patient-reported quality of life with proton therapy. METHOD AND MATERIALS: The first 102 patients who were enrolled on an outcome tracking protocol between 2006 and 2017 and treated with double-scattered proton therapy after prostatectomy were retrospectively reviewed. Eleven (11%) received adjuvant radiation, while 91 (89%) received salvage radiation. Seventy-four received double-scattered proton therapy to the prostate bed only. Twenty-eight received a double-scattered proton therapy prostate-bed boost after prostate-bed and pelvic-node treatment. Eleven adjuvant patients received a median dose of 66.6 GyRBE (range, 66.0-70.2). Ninety-one salvage patients received a median dose of 70.2 GyRBE (range, 66.0-78.0). Forty-five patients received androgen deprivation therapy for a median 9 months (range, 1-30). Toxicities were scored using Common Terminology Criteria for Adverse Events v4.0 criteria, and patient-reported quality-of-life data were reviewed. RESULTS: The median follow-up was 5.5 years (range, 0.8-11.4 years). Five-year biochemical relapse-free and distant metastases-free survival rates were 72% and 91% for adjuvant patients, 57% and 97% for salvage patients, and 57% and 97% overall. Acute and late grade 3 or higher genitourinary toxicity rates were 1% and 7%. No patients had grade 3 or higher gastrointestinal toxicity. Acute and late grade 2 gastrointestinal toxicities were 5% and 2%. The mean values and SDs of the International Prostate Symptom Score, International Index of Erectile Function, and Expanded Prostate Cancer Index Composite bowel function and bother were 7.5 (SD = 5.9), 10.2 (SD = 8.3), 92.8 (SD = 11.1), and 91.2 (SD = 6.4), respectively, at baseline, and 12.1 (SD = 9.1), 10.1 (SD = 6.7), 87.3 (SD = 18), and 86.7 (SD = 13.8) at the 5-year follow-up. CONCLUSION: High-dose postprostatectomy proton therapy provides effective long-term biochemical control and freedom from metastasis, with low acute and long-term gastrointestinal and genitourinary toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA