Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410304, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003723

RESUMO

Open-shell materials bearing multiple spin centres provide a key route to efficient charge transport in single-molecule electronic devices. They have narrow energy gaps, and their molecular orbitals align closely to the Fermi level of the metallic electrodes, thus allowing efficient electronic transport and higher conductance. Maintaining and stabilising multiple open-shell states - especially in contact with metallic electrodes - is however very challenging, generally requiring a continuous chemical or electrochemical potential to avoid self-immolation of the open-shell character. To overcome this issue, we designed, synthesised, and measured the conductance of a series of bis(indeno) fused acenes, where stability is imparted by a close-shell quinoidal conformation in resonance with the diradical electronic configuration. We show here that these compounds have anti-ohmic behaviour, with conductance increasing with increasing molecular length, at an unprecedented rate and across the entire bias window ([[EQUATION]]). Density Functional Theory (DFT) calculations support our findings, showing the rapidly narrowing HOMO-LUMO gap, unique to these diradicaloid structures, is responsible for the observed behaviour. Our results provide a framework for achieving efficient transport in neutral compounds and demonstrate the promise that diradicaloid materials have in single-molecule electronics, owing to their great stability and unique electronic structure.

2.
Angew Chem Int Ed Engl ; 63(31): e202403577, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38770763

RESUMO

There are several binding groups used within molecular electronics for anchoring molecules to metal electrodes (e.g., R-SMe, R-NH2, R-CS2 -, R-S-). However, some anchoring groups that bind strongly to electrodes have poor/unknown stability, some have weak electrode coupling, while for some their binding motifs are not well defined. Further binding groups are required to aid molecular design and to achieve a suitable balance in performance across a range of properties. We present an in-depth investigation into the use of carbodithioate esters as contact groups for single-molecule conductance measurements, using scanning tunnelling microscopy break junction measurements (STM-BJ) and detailed surface spectroscopic analysis. We demonstrate that the methyl carbodithioate ester acts as an effective contact for gold electrodes in STM-BJ measurements. Surface enhanced Raman measurements demonstrate that the C=S functionality remains intact when adsorbed on to gold nanoparticles. A gold(I) complex was also synthesised showing a stable C=S→AuI interaction from the ester. Comparison with a benzyl thiomethyl ether demonstrates that the C=S moiety significantly contributes to charge transport in single-molecule junctions. The overall performance of the CS2Me group demonstrates it should be used more extensively and has strong potential for the fabrication of larger area devices with long-term stability.

3.
Small ; 20(25): e2308865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221684

RESUMO

Mechanosensitive molecular junctions, where conductance is sensitive to an applied stress such as force or displacement, are a class of nanoelectromechanical systems unique for their ability to exploit quantum mechanical phenomena. Most studies so far relied on reconfiguration of the molecule-electrode interface to impart mechanosensitivity, but this approach is limited and, generally, poorly reproducible. Alternatively, devices that exploit conformational flexibility of molecular wires have been recently proposed. The mechanosensitive properties of molecular wires containing the 1,1'-dinaphthyl moiety are presented here. Rotation along the chemical bond between the two naphthyl units is possible, giving rise to two conformers (transoid and cisoid) that have distinctive transport properties. When assembled as single-molecule junctions, it is possible to mechanically trigger the transoid to cisoid transition, resulting in an exquisitely sensitive mechanical switch with high switching ratio (> 102). Theoretical modeling shows that charge reconfiguration upon transoid to cisoid transition is responsible for the observed behavior, with generation and subsequent lifting of quantum interference features. These findings expand the experimental toolbox of molecular electronics with a novel chemical structure with outstanding electromechanical properties, further demonstrating the importance of subtle changes in charge delocalization on the transport properties of single-molecule devices.

4.
Small ; 20(8): e2306334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817372

RESUMO

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

5.
Nanoscale ; 16(1): 195-204, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38050747

RESUMO

Quantum interference (QI) is well recognised as a significant contributing factor to the magnitude of molecular conductance values in both single-molecule and large area junctions. Numerous structure-property relationship studies have shown that para-connected oligo(phenyleneethynylene) (OPE) based molecular wires exemplify the impact of constructive quantum interference (CQI), whilst destructive quantum interference (DQI) effects are responsible for the orders of magnitude lower conductance of analogous meta-contacted OPE derivatives, despite the somewhat shorter effective tunnelling distance. Since molecular conductance is related to the value of the transmission function, evaluated at the electrode Fermi energy, T(EF), which in turn is influenced by the presence and relative energy of (anti)resonances, it follows that the relative single-molecule conductance of para- and meta-contacted OPE-type molecules is tuned both by the anchor group and the nature of the electrode materials used in the construction of molecular junctions (gold|molecule|gold vs. gold|molecule|graphene). It is shown here that whilst amine-contacted junctions show little influence of the electrode material on molecular conductance due to the similar electrode-molecule coupling through this anchor group to both types of electrodes, the weaker coupling between thiomethyl and ethynyl anchors and the graphene substrate electrode results in a relative enhancement of the DQI effect. This work highlights an additional parameter space to explore QI effects and establishes a new working model based on the electrode materials and anchor groups in modulating QI effects beyond the chemical structure of the molecular backbone.

6.
Inorg Chem ; 62(51): 20940-20947, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078891

RESUMO

Controlling the orientation of complex molecules in molecular junctions is crucial to their development into functional devices. To date, this has been achieved through the use of multipodal compounds (i.e., containing more than two anchoring groups), resulting in the formation of tri/tetrapodal compounds. While such compounds have greatly improved orientation control, this comes at the cost of lower surface coverage. In this study, we examine an alternative approach for generating multimodal compounds by binding multiple independent molecular wires together through metal coordination to form a molecular bundle. This was achieved by coordinating iron(II) and cobalt(II) to 5,5'-bis(methylthio)-2,2'-bipyridine (L1) and (methylenebis(4,1-phenylene))bis(1-(5-(methylthio)pyridin-2-yl)methanimine) (L2) to give two monometallic complexes, Fe-1 and Co-1, and two bimetallic helicates, Fe-2 and Co-2. Using XPS, all of the complexes were shown to bind to a gold surface in a fac fashion through three thiomethyl groups. Using single-molecule conductance and DFT calculations, each of the ligands was shown to conduct as an independent wire with no impact from the rest of the complex. These results suggest that this is a useful approach for controlling the geometry of junction formation without altering the conductance behavior of the individual molecular wires.

7.
J Phys Chem C Nanomater Interfaces ; 127(26): 12802-12810, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37435408

RESUMO

The environment surrounding a molecular junction affects its charge-transport properties and, therefore, must be chosen with care. In the case of measurements in liquid media, the solvent must provide good solvation, grant junction stability, and, in the case of electrolyte gating experiments, allow efficient electrical coupling to the gate electrodes through control of the electrical double layer. We evaluated in this study the deep eutectic solvent mixture (DES) ethaline, which is a mixture of choline chloride and ethylene glycol (1:2), for single-molecule junction fabrication with break-junction techniques. In ethaline, we were able to (i) measure challenging and poorly soluble molecular wires, exploiting the improved solvation capabilities offered by DESs, and (ii) efficiently apply an electrostatic gate able to modulate the conductance of the junction by approximately an order of magnitude within a ∼1 V potential window. The electrochemical gating results on a Au-VDP-Au junction follow exceptionally well the single-level modeling with strong gate coupling (where VDP is 1,2-di(pyridine-4-yl)ethene). Ethaline is also an ideal solvent for the measurement of very short molecular junctions, as it grants a greatly reduced snapback distance of the metallic electrodes upon point-contact rupture. Our work demonstrates that DESs are viable alternatives to often relatively expensive ionic liquids, offering good versatility for single-molecule electrical measurements.

8.
Angew Chem Int Ed Engl ; 62(24): e202302150, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37029093

RESUMO

Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.

9.
ACS Omega ; 8(51): 48958-48965, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162767

RESUMO

The present work provides an insight into the effect of connectivity isomerization of metal-2,2'-bipyridine complexes. For that purpose, two new 2,2'-bipyridine (bpy) ligand systems, 4,4'-bis(4-(methylthio)phenyl)-2,2'-bipyridine (Lmeta) and 5,5'-bis(3,3-dimethyl-2,3-dihydrobenzothiophen-5-yl)-2,2'-bipyridine (Lpara) were synthesized and coordinated to rhenium and manganese to obtain the corresponding complexes MnLmeta(CO)3Br, ReLmeta(CO)3Br, MnLpara(CO)3Br, MoLpara(CO)4 and ReLpara(CO)3Br. The experimental and theoretical results revealed that coordination to the para system, i.e., the metal ion peripheral to the conductance path, gave a slightly increased conductance compared to the free ligand attributed to the reduced highest occupied molecular orbital (HOMO)-least unoccupied molecular orbital (LUMO) gap. The meta-based system formed a destructive quantum interference feature that reduced the conductance of a S···S contacted junction to below 10-5.5Go, reinforcing the importance of contact group connectivity for molecular wire conductance.

10.
Langmuir ; 38(46): 14290-14301, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354380

RESUMO

Sphingolipids are an important class of lipids found in mammalian cell membranes with important structural and signaling roles. They differ from another major group of lipids, the glycerophospholipids, in the connection of their hydrocarbon chains to their headgroups. In this study, a combination of electrochemical and structural methods has been used to elucidate the effect of this difference on sphingolipid behavior in an applied electric field. N-Palmitoyl sphingomyelin forms bilayers of similar coverage and thickness to its close analogue di-palmitoyl phosphatidylcholine. Grazing incidence diffraction data show slightly closer packing and a smaller chain tilt angle from the surface normal. Electrochemical IR results at low charge density show that the difference in tilt angle is retained on deposition to form bilayers. The bilayers respond differently to increasing electric field strength: chain tilt angles increase for both molecules, but sphingomyelin chains remain tilted as field strength is further increased. This behavior is correlated with disruption of the hydrogen-bonding network of small groups of sphingomyelin molecules, which may have significance for the behavior of molecules in lipid rafts in the presence of strong fields induced by ion gradients or asymmetric distribution of charged lipids.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Animais , Esfingomielinas/química , Bicamadas Lipídicas/química , Fosfatidilcolinas , Membrana Celular , Microdomínios da Membrana , Mamíferos
11.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767015

RESUMO

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

12.
Phys Chem Chem Phys ; 24(11): 6836-6844, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35244656

RESUMO

The single-molecular conductance of a redox active viologen molecular bridge between Au|graphene electrodes has been studied in an electrochemical gating configuration in an ionic liquid medium. A clear "off-on-off" conductance switching behaviour has been achieved through gating of the redox state when the electrochemical potential is swept. The Au|viologen|graphene junctions show single-molecule conductance maxima centred close to the equilibrium redox potentials for both reduction steps. The peak conductance of Au|viologen|graphene junctions during the first reduction is significantly higher than that of previously measured Au|viologen|Au junctions. This shows that even though the central viologen moiety is not directly linked to the enclosing electrodes, substituting one gold contact for a graphene one nevertheless has a significant impact on junction conductance values. The experimental data was compared against two theoretical models, namely a phase coherent tunnelling and an incoherent "hopping" model. The former is a simple gating monoelectronic model within density functional theory (DFT) which discloses the charge state evolution of the molecule with electrode potential. The latter model is the collective Kuznetsov Ulstrup model for 2-step sequential charge transport through the redox centre in the adiabatic limit. The comparison of both models to the experimental data is discussed for the first time. This work opens perspectives for graphene-based molecular transistors with more effective gating and fundamental understanding of electrochemical electron transfer at the single molecular level.

13.
Angew Chem Int Ed Engl ; 61(23): e202116985, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289977

RESUMO

Integrating radical (open-shell) species into non-cryogenic nanodevices is key to unlocking the potential of molecular electronics. While many efforts have been devoted to this issue, in the absence of a chemical/electrochemical potential the open-shell character is generally lost in contact with the metallic electrodes. Herein, single-molecule devices incorporating a 6-oxo-verdazyl persistent radical have been fabricated using break-junction techniques. The open-shell character is retained at room temperature, and electrochemical gating permits in situ reduction to a closed-shell anionic state in a single-molecule transistor configuration. Furthermore, electronically driven rectification arises from bias-dependent alignment of the open-shell resonances. The integration of radical character, transistor-like switching, and rectification in a single molecular component paves the way to further studies of the electronic, magnetic, and thermoelectric properties of open-shell species.

14.
J Am Chem Soc ; 143(48): 20472-20481, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817985

RESUMO

Molecules capable of mediating charge transport over several nanometers with minimal decay in conductance have fundamental and technological implications. Polymethine cyanine dyes are fascinating molecular wires because up to a critical length, they have no bond-length alternation (BLA) and their electronic structure resembles a one-dimensional free-electron gas. Beyond this threshold, they undergo a symmetry-breaking Peierls transition, which increases the HOMO-LUMO gap. We have investigated cationic cyanines with central polymethine chains of 5-13 carbon atoms (Cy3+-Cy11+). The absorption spectra and crystal structures show that symmetry breaking is sensitive to the polarity of the medium and the size of the counterion. X-ray crystallography reveals that Cy9·PF6 and Cy11·B(C6F5)4 are Peierls distorted, with high BLA at one end of the π-system, away from the partially delocalized positive charge. This pattern of BLA distribution resembles that of solitons in polyacetylene. The single-molecule conductance is essentially independent of molecular length for the polymethine salts of Cy3+-Cy11+ with the large B(C6F5)4- counterion, but with the PF6- counterion, the conductance decreases for the longer molecules, Cy7+-Cy11+, because this smaller anion polarizes the π-system, inducing a symmetry-breaking transition. At higher bias (0.9 V), the conductance of the shorter chains, Cy3+-Cy7+, increases with length (negative attenuation factor, ß = -1.6 nm-1), but the conductance still drops in Cy9+ and Cy11+ with the small polarizing PF6- counteranion.

15.
Langmuir ; 37(40): 11887-11899, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590852

RESUMO

Lipid bilayers form the basis of biological cell membranes, selective and responsive barriers vital to the function of the cell. The structure and function of the bilayer are controlled by interactions between the constituent molecules and so vary with the composition of the membrane. These interactions also influence how a membrane behaves in the presence of electric fields they frequently experience in nature. In this study, we characterize the electrochemical phase behavior of dipalmitoylphosphatidylcholine (DPPC), a glycerophospholipid prevalent in nature and often used in model systems and healthcare applications. DPPC bilayers were formed on Au(111) electrodes using Langmuir-Blodgett and Langmuir-Schaefer deposition and studied with electrochemical methods, atomic force microscopy (AFM) and in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The coverage of the substrate determined with AFM is in accord with that estimated from differential capacitance measurements, and the bilayer thickness is slightly higher than for bilayers of the similar but shorter-chained lipid, dimyristoylphosphatidylcholine (DMPC). DPPC bilayers exhibit similar electrochemical response to DMPC bilayers, but the organization of molecules differs, particularly at negative charge densities. Infrared spectra show that DPPC chains tilt as the charge density on the metal is increased in the negative direction, but, unlike in DMPC, the chains then return to their original tilt angle at the most negative potentials. The onset of the increase in the chain tilt angle coincides with a decrease in solvation around the ester carbonyl groups, and the conformation around the acyl chain linkage differs from that in DMPC. We interpret the differences in behavior between bilayers formed from these structurally similar lipids in terms of stronger dispersion forces between DPPC chains and conclude that relatively subtle changes in molecular structure may have a significant impact on a membrane's response to its environment.


Assuntos
Ouro , Fosfolipídeos , 1,2-Dipalmitoilfosfatidilcolina , Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Estrutura Molecular , Espectrofotometria Infravermelho
17.
J Am Chem Soc ; 143(10): 3817-3829, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606524

RESUMO

The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.

18.
ACS Sens ; 6(2): 530-537, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33471521

RESUMO

Indium tin oxide (ITO) is an attractive substrate for single-molecule electronics since it is transparent while maintaining electrical conductivity. Although it has been used before as a contacting electrode in single-molecule electrical studies, these studies have been limited to the use of carboxylic acid terminal groups for binding molecular wires to the ITO substrates. There is thus the need to investigate other anchoring groups with potential for binding effectively to ITO. With this aim, we have investigated the single-molecule conductance of a series of eight tolane or "tolane-like" molecular wires with a variety of surface binding groups. We first used gold-molecule-gold junctions to identify promising targets for ITO selectivity. We then assessed the propensity and selectivity of carboxylic acid, cyanoacrylic acid, and pyridinium-squarate to bind to ITO and promote the formation of molecular heterojunctions. We found that pyridinium squarate zwitterions display excellent selectivity for binding to ITO over gold surfaces, with contact resistivity comparable to that of carboxylic acids. These single-molecule experiments are complemented by surface chemical characterization with X-ray photoelectron spectroscopy, quartz crystal microbalance, contact angle determination, and nanolithography using an atomic force miscroscope. Finally, we report the first density-functional theory calculations involving ITO electrodes to model charge transport through ITO-molecule-gold heterojunctions.


Assuntos
Eletrônica , Compostos de Estanho , Condutividade Elétrica , Eletrodos
19.
RSC Adv ; 11(32): 19768-19778, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479201

RESUMO

The efficacy of a number of different methods for depositing a dimyristoylphosphatidylcholine (DMPC) lipid bilayer or DMPC-cholesterol (3 : 1) mixed bilayer onto a silicon substrate has been investigated in a quantitative manner using atomic force microscopy (AFM) image analysis to extract surface coverage. Complementary AFM-IR measurements were used to confirm the presence of the lipids. For the Langmuir-Blodgett/Schaefer deposition method at temperatures below the chain-melting transition temperature (T m), a large number of bilayer defects resulted when DMPC was deposited from a water subphase. Addition of calcium ions to the trough led to smaller, more frequent defects, whereas addition of cholesterol to the lipid mixture led to a vast improvement in bilayer coverage. Poor coverage was achieved for deposition at temperatures above T m. Formation of the deposited bilayer from vesicle fusion proved a more reliable method for all systems, with formation of near-complete bilayers within 60 seconds at temperatures above T m, although this method led to a higher probability of multilayer formation and rougher bilayer surfaces.

20.
Nanoscale Horiz ; 6(1): 49-58, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107543

RESUMO

The ability to control the charge state of individual molecules wired in two-terminal single-molecule junctions is a key challenge in molecular electronics, particularly in relation to the development of molecular memory and other computational componentry. Here we demonstrate that single porphyrin molecular junctions can be reversibly charged and discharged at elevated biases under ambient conditions due to the presence of a localised molecular eigenstate close to the Fermi edge of the electrodes. In particular, we can observe long-lived charge-states with lifetimes upwards of 1-10 seconds after returning to low bias and large changes in conductance, in excess of 100-fold at low bias. Our theoretical analysis finds charge-state lifetimes within the same time range as the experiments. The ambient operation demonstrates that special conditions such as low temperatures or ultra-high vacuum are not essential to observe hysteresis and stable charged molecular junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA