Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemosphere ; 356: 141945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599333

RESUMO

In recent times, the application of biochar (BC) as an upcoming catalyst for the elimination of recalcitrant pollutants has been widely explored. Here, an iron loaded bamboo biochar activated peroxymonosulphate (PMS) process was tested for removing Congo red (CR) dye from water medium. The catalyst was synthesized using a green synthesis method using neem extracts and characterized using SEM, FTIR, and XRD. The effects of various operating parameters, including solution pH, catalyst dosage, and pollutant dosage, on dye degradation efficiency were examined. The results showed that at the optimized conditions of 300 mg L-1 PMS concentration, 200 mg L-1 catalyst dosage, and pH 6, about 89.7% of CR dye (initial concentration 10 ppm) was removed at 60 min of operation. Scavenging experiments revealed the significant contribution of O2•-, •OH, and 1O2 for dye degradation, with a major contribution of O2•-. The activation of PMS was mainly done by biochar rather than iron (loaded on biochar). The catalyst was highly active even after four cycles.


Assuntos
Carvão Vegetal , Corantes , Poluentes Químicos da Água , Carvão Vegetal/química , Catálise , Poluentes Químicos da Água/química , Corantes/química , Superóxidos/química , Peróxidos/química , Vermelho Congo/química , Ferro/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
2.
Chemosphere ; 353: 141566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428536

RESUMO

For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Poluentes Químicos da Água/análise , Adsorção
3.
Chemosphere ; 338: 139449, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437613

RESUMO

To handle complex wastewater with limited biodegradability, hybrid treatment systems are necessary. The current study represents the combined effectiveness of sulfate-radical associated electro-chemical advanced oxidation process (SR-EAOP) and electro-coagulation (EC) for the treatment of stabilized landfill leachate. For SR-EAOP, Pt/Ti was employed as the anode and an iron plate as the cathode; while EC treatment was performed by switching the polarity. Hence, both electrochemical treatment was carried out in single reactor. Initially, the effects of pH, applied voltage, persulfate and Fe2+ dosage, on the performance of SR-EAOP was examined. Sulfate radical was generated in the electrolytic system via cathodic reduction of persulfate (PS) and ferrous (Fe2+) ion activation. Auxiliary processes such as anodic oxidation via Pt/Ti anode and indirect electro-chemical oxidation were also contributed for pollutant degradation. Combined process SR-EAOP followed by EC (SR-EAOP + EC) has better leachate treatment efficacy in comparison with EC + SR-EAOPs. The SR-EAOP + EC based combined treatment mechanism achieved an efficient COD reduction of 88.67% than that of EC + SR - EAOP process (74.51% COD reduction). Characterization studies have been carried out for post-treated dried-sludge using Field Emission scanning electron microscope (FE-SEM) and X-ray powder diffraction (XRD) techniques. The combined process treatment (SR-EAOP + EC) can be applied as pre-treatment for leachate decontamination.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxirredução , Ferro , Sulfatos/química , Peróxido de Hidrogênio/química
4.
Chemosphere ; 339: 139627, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487987

RESUMO

The present article describes the recent advancements (since 2018) in peroxicoagulation (PC) process, which was introduced by Professor Enric Brillas and his group in 1997. Instead of checking the efficiency of PC process to degrade a targeted pollutant in synthetic wastewater, researchers started testing its efficacy for the treatment of complex real wastewater. Applications like disinfection and removal of heavy metals as well as oxidative removal of arsenite from water were tested recently. To improve the efficiency of PC process, modifications were made for electrode materials (both anode and cathode) and electrolytic cells. Performance of PC process in combination with other treatment technologies is also discussed.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Eletrólise , Eletrocoagulação , Eletrodos , Oxirredução , Peróxido de Hidrogênio
6.
Water Sci Technol ; 87(6): 1329-1348, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37001152

RESUMO

Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-µg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.


Assuntos
Cosméticos , Poluentes Químicos da Água , Águas Residuárias , Ecossistema , Oxirredução , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
8.
Environ Res ; 217: 114786, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395865

RESUMO

This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos
9.
Environ Res ; 217: 114789, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375505

RESUMO

Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Sulfatos , Água , Oxirredução , Purificação da Água/métodos , Preparações Farmacêuticas
10.
Sci Total Environ ; 858(Pt 1): 159762, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306836

RESUMO

Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias/análise , Água , Agricultura , Adsorção
11.
Chemosphere ; 307(Pt 2): 135756, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35917977

RESUMO

The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação/métodos , Eletrodos , Nutrientes , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Purificação da Água/métodos
12.
Environ Res ; 214(Pt 3): 114041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952749

RESUMO

The contamination of natural water bodies with pharmaceutical compounds has raised significant concerns about ecological and public health safety. In this study, biochars were synthesized from iron-free microalgal biomass (harvested by centrifugation) and iron-containing microalgal biomass (harvested by coagulation) and tested for the adsorption of ciprofloxacin (CIP) and diclofenac (DIC) from water in batch and fixed-bed column continuous studies. The physicochemical properties of synthesized biochars were analyzed using Brunauer, Emmett and Teller (BET) surface area analyzer, elemental analyzer, Fourier Transformed Infrared spectroscopy (FTIR), X-ray Diffractometer (XRD), and Scanning electron microscope with energy dispersive spectroscopy (SEM-EDS). The maximum monolayer adsorption capacities of iron-containing biochar (FBC750W) and iron-free biochar (MBC750W) based on the Langmuir model were obtained as 75.97 mg/g and 39.08 mg/g for CIP, and 40.99 mg/g and 6.77 mg/g for DIC, respectively. Comparatively, maximum monolayer adsorption capacities of commercial activated carbon (C-AC) were found to be 50.97 mg/g and 46.39 mg/g for CIP and DIC, respectively. In fixed-bed column continuous adsorption studies, the effects of flow rate (1 and 2 mL/min) and the adsorbent amount (50 and 100 mg) on adsorption performance were evaluated. Column kinetic models, such as Bohart-Adams model and Fractal-like Bohart-Adams model were examined. The adsorption mechanisms were proposed as pore filling, π-π interaction, and electrostatic interaction. Overall, the results of this study revealed that microalgal biomass, harvested with FeCl3, can be used for the direct synthesis of iron-containing biochar for the removal of pharmaceuticals from water.


Assuntos
Microalgas , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal/química , Ciprofloxacina/química , Diclofenaco , Cinética , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise
13.
Environ Res ; 208: 112752, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065935

RESUMO

Investigations about the remediation of Hexachlorocyclohexane (HCH), a persistent organic pollutant of global concern, have been extensively reported to treat the HCH contaminated soil. The difficulty arising due to desorption and long ageing procedures of this hydrophobic organic compound in the soil, make it necessary to exploit techniques like soil washing or addition of surfactants, for enhancing the mass transfer rate of hydrophobic compounds. However, this technique gives rise to the generation of a large quantity of waste solution containing the pollutant and various other toxic substances. Moreover, it is challenging to deal with the complex soil washing solution, and thus a follow-up treatment of such washing solution is essentially required before its discharge. This follow-up treatment could be the bioreactor system to efficiently treat the pollutant in the wash solution, thereby reducing the amount of contaminated soil that has to be treated. Among many suggested remediation methods and treatment technologies, integrated soil washing and post-treatment with the bioreactor system could be an environmentally viable method for the remediation of HCH contaminated sites. This review focuses on the soil washing procedures applied so far for the HCH contaminated soil and various factors affecting the efficiency of separation of the target pollutant. Furthermore, the environmental and reactor design-related factors are also discussed for degradation of HCH in the reactor system. Finally, advantages and environmental feasibility of this proposed combined technology and the challenges that need to be encountered are envisaged.


Assuntos
Hexaclorocicloexano , Poluentes do Solo , Biodegradação Ambiental , Reatores Biológicos , Poluição Ambiental/prevenção & controle , Solo/química , Poluentes do Solo/análise
14.
Environ Res ; 205: 112463, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856168

RESUMO

The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Environ Technol ; 43(22): 3497-3506, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33944690

RESUMO

HIGHLIGHTS: The Chelate-modified EF process for the removal of COD at near neutral pHTreatment of the mixed industrial wastewater with very low BOD/COD ratioInfluence of Fenton catalyst and chelating agent dosage on COD removal.Comparable COD removal of 67% with Chelate-modified EF at near neutral pH and 66% with EF at acidic pH.Mineralization current efficiency and instantaneous current efficiency for COD removal.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
16.
Chemosphere ; 287(Pt 2): 132216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34517234

RESUMO

Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 µg L-1 whereas phthalates were found below the detectable limit to 384 µg L-1, pesticides in the order of 10-1 µg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 µg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.


Assuntos
Poluentes Químicos da Água , Radical Hidroxila , Oxirredução , Poluentes Químicos da Água/análise
17.
Chemosphere ; 289: 133152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34875291

RESUMO

Color-producing chemicals emitted from many sources, such as textile or dye manufacturing industries, are a significant concern worldwide. The present study focuses on the electro-peroxone (EP) process for decolorizing a synthetic azo dye, C.I. Reactive Black 5 (RB5). Findings suggest that the EP process is more effective for dye degradation than ozonation and electrolysis. The EP process resulted in 100% decolorization after 60 min of contact time under optimum testing conditions such as pH 7, applied current 300 mA, and sulfate concentration 3.55 g L-1. Based on the findings of the primary investigation, EP treatment of real textile effluent was carried out and 2 h of EP treatment resulted in 99% decolorization and 74%total organic carbon (TOC) removal. As an outcome, the EP process can treat textile wastewater in a cost-effective and environmentally friendly manner.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Azo , Corantes , Eletrólise , Indústria Têxtil , Têxteis , Poluentes Químicos da Água/análise
18.
Chemosphere ; 290: 133348, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34922960

RESUMO

Mixed industrial wastewater treatment efficiency of combined electro-Fenton (EF) and electrocoagulation (EC) processes was investigated in the present study. Alkali modified laterite soil was used as a heterogeneous EF catalyst and found superior performance than the raw laterite soil. Initially, the effect of catalyst dosage, initial pH, and applied voltage on the performance of EF process was carried out. A total of 54.57% COD removal was observed after 60 min of the EF treatment. Further treatment was carried out with EC process at different voltages. A total of 85.27% COD removal after 2 h treatment was observed by combining two electrochemical processes. Performance of EF followed by EC (EF + EC) process was compared with EC followed by EF (EC + EF) process. Even though efficiency is the same, EF + EC is a better strategy than EC + EF as it nullifies the neutralization requirement after EF process in addition to high mineralization efficiency, enhanced biodegradability, and lesser sludge generation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
Chemosphere ; 276: 130188, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743419

RESUMO

An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 771: 145291, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545482

RESUMO

Tetracyclines (TCs) are a group of broad-spectrum antibiotics having vast human, veterinary, and aquaculture applications. The continuous release of TCs residues into the environment and the inadequate removal through the conventional treatment systems result in its prevalent occurrence in soil, surface water, groundwater, and even in drinking water. As aqueous TCs contamination is the tip of the iceberg, and TCs possess good sorption capacity towards soil, sediments, sludge, and manure, it is insufficient to rely on the sorptive removal in the conventional water treatment plants. The severity of the TCs contamination is evident from the emergence of TCs resistance in a wide variety of microorganisms. This paper reviews the recent research on the TCs occurrence in the environmental matrices, fate in natural systems, toxic effects, and the removal methods. The high performance liquid chromatography (HPLC) determination of TCs in environmental samples and the associated technology developments are analyzed. The benefits and limitations of biochemical and physicochemical removal processes are also discussed. This work draws attention to the inevitability of proper TC sludge management. This paper also gives insight into the limitations of TCs related research and the future scope of research in environmental contamination by TCs residues.


Assuntos
Tetraciclinas , Purificação da Água , Antibacterianos/toxicidade , Humanos , Esterco , Esgotos , Tetraciclinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA