Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(9): 4775-4784, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699797

RESUMO

The "14th Five-Year Plan" period is the key stage for southern Hebei cities (Shijiazhuang, Xingtai, and Handan) to be removed from the bottom ten of the Air Quality Composite Index. The hourly ozone (O3) data of 15 country-controlled monitoring stations in the southern cities of Hebei Province from April to October 2020, hourly data of three volatile organic compound (VOCs) supersites, and the meteorological data of the same period were used for analysis, combined with the spatiotemporal succession, O3 formation potential (OFP), backward trajectory modeling, and spatial statistical modeling. The results showed the following:firstly, the temporal variations in O3 in southern cities of Hebei Province from April to October presented an inverted "U" shape, and the spatial distribution was high in the south and low in the north. O3 pollution was the most serious in June, with Xingtai (233.8 µg·m-3)>Handan (225.2 µg·m-3)>Shijiazhuang (224.8 µg·m-3). O3 was positively correlated with temperature and wind speed and negatively correlated with humidity and VOCs; furthermore, the ρ(TVOC) from April to October followed the order of Xingtai (274 µg·m-3)>Shijiazhuang (266 µg·m-3)>Handan (218 µg·m-3). The total OFP of alkenes and aromatics accounted for more than half; moreover, the trajectory of O3 pollution in southern cities of Hebei Province showed spatial directionality and relevance. The highest mass concentration of O3 (198.92 µg·m-3) was in the trajectory from Shijiazhuang to Xingtai, and the highest frequency of O3 pollution was in the trajectory from Handan to Xingtai. Moreover, the transmission contributions of O3from Xingtai to Shijiazhuang agglomerations were high (27.39%), and Handan played a significant role in the transmission contribution of O3 to Xingtai (32.76%).

2.
Huan Jing Ke Xue ; 42(11): 5131-5142, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708952

RESUMO

In order to systematically study the transmission characteristics of seasonal and typical pollutants in Shijiazhuang, hourly data of ground-level pollutants(PM2.5, PM10, O3, NO2, SO2, and CO) from 46 state-and provincial-controlled stations, and meteorological(temperature, humidity, and wind speed) data from 17 counties in Shijiazhuang City from December 2018 to November 2019 was analyzed. The interpolation(IDW) and correlation analysis were applied to seasonal and temporal spatial patterns of pollutant concentration. The backward trajectories analysis was performed to explore the seasonal transmission pattern and potential source areas of pollution in Shijiazhuang by combining with the global data assimilation system(GDAS). The results indicate that the different seasons have characteristic pollutants, as follows:spring(PM10, 48.91%), summer(O3, 81.97%), autumn(PM10 and PM2.5, 47.54% and 32.79%), and winter(PM2.5, 74.44%), which are related to the variation of meteorological conditions. Furthermore, the PM10(spring) concentration correlated negatively with the wind speed, presenting a high distribution in the northwest and low in the southeast, with a southerly transmission direction(53.32%). Central and southern Hebei, central and northern Henan, and central Shanxi are the potential sources of pollution(WPCWTij ≥ 160 µg·m-3), impacting western Shandong and northwest Shanxi(WPSCFij ≥ 0.3) with PM10. Moreover, the O3(summer) concentration correlated positively with temperature, and negatively with humidity. The southeast-south(54.24%) is the source direction of the transmission, and the potential source of O3 pollution is an arc area with Shijiazhuang in the center and Cangzhou and Heze as the double wings. Lastly, the PM2.5(autumn and winter) concentration correlated positively with humidity, and the winter concentration shows an increasing gradient from west to east. The trajectories of PM2.5 clustered the source directions:autumn(northeast-southeast, 74.75%), winter(northwest, 55.47%); central and southern Hebei, central and western Shanxi and northern Henan are the concentrated sources of potential pollution(WPCWTij ≥ 180 µg·m-3).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Poluição Ambiental , Material Particulado/análise , Estações do Ano
3.
Huan Jing Ke Xue ; 42(11): 5152-5161, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708954

RESUMO

In order to study the seasonal variations and pollution sources of carbonaceous species in PM2.5 in Chengde, the concentration of these components was determined in atmospheric PM2.5 samples collected in January, April, July, and October 2019. The change in carbonaceous species were analyzed based on the estimation of the ratio of organic carbon(OC) to elemental carbon(EC), total carbonaceous aerosol(TCA), and secondary organic carbon(SOC). The source of these pollutants was determined by means of the backward trajectory and principal component analysis(PCA). The results showed that the mean mass concentrations of PM2.5, OC, and EC during the sampling period were(31.26±21.39) µg·m-3,(13.27±8.68) µg·m-3, and(2.80±1.95) µg·m-3, respectively. The seasonal variations of PM2.5 were:winter[(47.68±30.37) µg·m-3]>autumn[(28.72±17.12) µg·m-3]>spring[(26.59±15.32) µg·m-3]>summer[(23.17±8.38) µg·m-3], consistent with the trend of total carbon(TC), OC, and EC. The source of OC and EC during winter(R2=0.85) was similar. Based on the ratio of OC/EC, all four seasons were affected by traffic and coal-burning source emissions, and the most affected season by bituminous coal emissions was winter. The average concentration of TCA was(21.38±13.68) µg·m-3, which accounted for 68.39% of PM2.5. The order of secondary conversion rate(SOC/OC) was:spring(54.09%) >autumn(37.64%) >summer(32.91%) >winter(25.43%). The results of the backward trajectory simulation show that the pollutant concentrations carried by air masses are relatively low in spring and summer, and the transport channels of pollutants are southwest in autumn and northwest in winter. The results of the PCA showed that the key to reducing PM2.5 in Chengde is to control emissions from vehicle exhausts, and coal and biomass combustion sources.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
4.
Huan Jing Ke Xue ; 42(6): 2679-2690, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032067

RESUMO

Ground-level O3, NO2, and meteorological (temperature, humidity, wind speed, precipitation, and sunshine duration) data from 18 counties in Shijiazhuang City from 2014 to 2017, and volatile organic compounds (VOCs) data for Summer 2017, were analyzed to explore the spatial patterns, evolution, influencing factors, and source apportionment of O3 and NO2 in Shijiazhuang City. Network analysis and inverse distance weighted (IDW) spatial autocorrelation and backward trajectories analyses were performed. The results indicate that O3 concentrations increased between 2014 and 2017, and monthly variations showed a unimodal trend. The typical period of peak O3 pollution (O3 ≥ 160 µg·m-3) was from May to September, characterized by high temperatures, low humidity, weak winds, and strong solar radiation. The O3 concentrations were negatively correlated with the NO2. Furthermore, O3 concentrations increased year-on-year since 2015 in main urban area, and the dominant pollutant type had changed from NO2 (2014 to 2016) to VOCs (2016 and 2017). However, the O3 concentration of county-areas limited by the VOCs. The main factors affecting O3 concentrations were industry, agriculture, economy, and population, and centers of O3 pollution associated with secondary industry appeared in the main urban areas of Shijiazhuang and Luancheng. Moreover, VOCs trajectories during the summer monitoring period were clustered in three source directions:(A) East-northeast, 26.67%; (B) Northwest-west, 43.33%; and (C) Southeast-south, 30%). Trajectories (A) and (C) were the dominant directions of VOC transmission (east-southeast).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA