Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(49): e2207344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36177699

RESUMO

Aqueous Zn-ion batteries are well regarded among a next-generation energy-storage technology due to their low cost and high safety. However, the unstable stripping/plating process leading to severe dendrite growth under high current density and low temperature impede their practical application. Herein, it is demonstrated that the addition of 2-propanol can regulate the outer solvation shell structure of Zn2+ by replacing water molecules to establish a "eutectic solvation shell", which provides strong affinity with the Zn (101) crystalline plane and fast desolvation kinetics during the plating process, rendering homogeneous Zn deposition without dendrite formation. As a result, the Zn anode exhibits promising cycle stability over 500 h under an elevated current density of 15 mA cm-2 and high depth of discharge of 51.2%. Furthermore, remarkable electrochemical performance is achieved in a 150 mAh Zn|V2 O5 pouch cell over 1000 cycles at low temperature of -20 °C. This work not only offers a new strategy to achieve excellent performance of aqueous Zn-ion batteries under harsh conditions, but also reveals electrolyte structure designs that can be applied in related energy storage and conversion fields.

2.
Adv Mater ; 34(38): e2204637, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35948461

RESUMO

Electrochemical CO2 reduction to CO is a potential sustainable strategy for alleviating CO2 emission and producing valuable fuels. In the quest to resolve its current problems of low-energy efficiency and insufficient durability, a dual-scale design strategy is proposed by implanting a non-noble active Sn-ZnO heterointerface inside the nanopores of high-surface-area carbon nanospheres (Sn-ZnO@HC). The metal d-bandwidth tuning of Sn and ZnO alters the extent of substrate-molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn-ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore-scale control, Sn-ZnO@HC achieves a quite low potential of -0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.

3.
Adv Mater ; 34(16): e2108079, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963198

RESUMO

Although one of the most mature battery technologies, lithium-ion batteries still have many aspects that have not reached the desired requirements, such as energy density, current density, safety, environmental compatibility, and price. To solve these problems, all-solid-state lithium batteries (ASSLB) based on lithium metal anodes with high energy density and safety have been proposed and become a research hotpot in recent years. Due to the advanced electrochemical properties of 2D materials (2DM), they have been applied to mitigate some of the current problems of ASSLBs, such as high interface impedance and low electrolyte ionic conductivity. In this work, the background and fabrication method of 2DMs are reviewed initially. The improvement strategies of 2DMs are categorized based on their application in the three main components of ASSLBs: The anode, cathode, and electrolyte. Finally, to elucidate the mechanisms of 2DMs in ASSLBs, the role of in situ characterization, synchrotron X-ray techniques, and other advanced characterization are discussed.

4.
Adv Mater ; 34(2): e2105541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613619

RESUMO

Lithium-sulfur (Li-S) batteries are considered as one of the most promising next-generation rechargeable batteries owing to their high energy density and cost-effectiveness. However, the sluggish kinetics of the sulfur reduction reaction process, which is so far insufficiently explored, still impedes its practical application. Metal-organic frameworks (MOFs) are widely investigated as a sulfur immobilizer, but the interactions and catalytic activity of lithium polysulfides (LiPs) on metal nodes are weak due to the presence of organic ligands. Herein, a strategy to design quasi-MOF nanospheres, which contain a transition-state structure between the MOF and the metal oxide via controlled ligand exchange strategy, to serve as sulfur electrocatalyst, is presented. The quasi-MOF not only inherits the porous structure of the MOF, but also exposes abundant metal nodes to act as active sites, rendering strong LiPs absorbability. The reversible deligandation/ligandation of the quasi-MOF and its impact on the durability of the catalyst over the course of the electrochemical process is acknowledged, which confers a remarkable catalytic activity. Attributed to these structural advantages, the quasi-MOF delivers a decent discharge capacity and low capacity-fading rate over long-term cycling. This work not only offers insight into the rational design of quasi-MOF-based composites but also provides guidance for application in Li-S batteries.

5.
ACS Appl Mater Interfaces ; 10(48): 41670-41677, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30384582

RESUMO

Recent advances in the development of two-dimensional (2D) materials have stimulated people's interest and enthusiasm to discover new kinds of 2D functional materials. In this paper, we propose a novel 2D layered semiconductor KAgSe using the first-principles calculation method, which displays excellent photovoltaic properties with proper direct band gap and significant carrier mobility. By evaluating the cohesive energy, vibrational phonon spectrum, and temporal evolution of the total energy at a high temperature of 500 K, the KAgSe monolayer is proved to be stable. Finite cleavage energy comparable to that of black phosphorus implies the feasibility of mechanical exfoliation of a KAgSe monolayer from the bulk. Layered KAgSe shows a ∼1.5 eV direct band gap, which is roughly independent of the number of layers. Remarkable optical absorption coefficients in the visible light region and significant carrier mobilities reveal a favorable application prospect of layered KAgSe in photovoltaic devices. Especially, the layer-independent optical absorption provides enormous convenience and less difficulty in experimental fabrication of photoelectronic devices which are based on finite layer KAgSe. To further explore the photovoltaic behaviors, the polarization angle-related photocurrent is evaluated for the KAgSe monolayer-based nanodevice by irradiating a beam of linearly polarized light to the scattering region. Moreover, large photon responsivity and external quantum efficiency are also obtained for the KAgSe monolayer.

6.
Phys Chem Chem Phys ; 20(23): 15736-15745, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29856448

RESUMO

The experimental synthesis and characterization of enigmatic triangulene were reported for the first time recently. Based on this enigmatic molecule, we proposed a triangulene-based molecular junction and presented first principles calculations to investigate the electron and phonon thermoelectric transport properties. Numerical results show that the spin polarized electric transport properties of the triangulene-based molecular junction can be adjusted effectively by bias voltage and gate voltage. Through varying the gate voltage applied on the triangulene molecule, the system can exhibit a perfect spin filter effect. When a temperature gradient is applied between the two leads, spin up current and spin down current flow along opposite directions in the system simultaneously. Thus pure spin current can be obtained on a large scale by changing the temperature, temperature gradient, and gate voltage. When the phonon vibration effect is considered in thermal transport, the figure of merit is suppressed distinctively especially when the temperature is within the 10 K < T < 100 K range. More importantly, a large spin figure of merit can be achieved accompanied by a small charge figure of merit by adjusting the temperature, gate voltage and chemical potential in a wide range, which indicates a favorable application prospect of the triangulene-based molecular junction as a spin calorigenic device.

7.
J Chem Phys ; 148(13): 134111, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626888

RESUMO

Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

8.
Sci Rep ; 5: 18021, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658128

RESUMO

Many features like spin-orbit coupling, bias and magnetic fields applied, and so on, can strongly influence the Kondo effect. One of the consequences is Kondo peak splitting. However, Kondo peak splitting led by a local moment has not been investigated systematically. In this research we study theoretically electronic transport through a single-level quantum dot exchange coupled to a local magnetic moment in the Kondo regime. We focus on the Kondo peak splitting induced by an anisotropic exchange coupling between the quantum dot and the local moment, which shows rich splitting behavior. We consider the cases of a local moment with S = 1/2 and S = 1. The longitudinal (z-component) coupling plays a role of multivalued magnetic fields and the transverse (x, y-components) coupling lifts the degeneracy of the quantum dot, both of which account for the fine Kondo peak splitting structures. The inter-level or intra-level transition processes are identified in detail. Moreover, we find a Kondo dip at the Fermi level under the proper parameters. The possible experimental observations of these theoretical results should deepen our understanding of Kondo physics.

9.
ScientificWorldJournal ; 2015: 414262, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861674

RESUMO

Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

10.
Nanotechnology ; 17(16): 4191-4, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727558

RESUMO

This paper presents a novel method for fabricating an ordered array of metallic nanoshells with a controllable shape by a combination of a porous polymer template and a nanocrystal-seeded electroless plating technique. The morphology of hollow particles has a strong dependence on the seed-deposition time onto the surfaces of the original colloidal template. Using this method, ordered Pt nanobowls (bowl-shaped shells) and, alternatively, nanocups (cup-shaped shells) are prepared. These materials show some intriguing properties: (i) reduced symmetry of the building blocks; (ii) a well-ordered structure; and (iii) a high ratio of surface area to volume, all of which are useful in many areas such as catalysts, sensors, and photonic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA