Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792259

RESUMO

The recovery of valuable gold from wastewater is of great interest because of the widespread use of the precious metal in various fields and the pollution generated by gold-containing wastes in water. In this paper, a water-insoluble cross-linked adsorbent material (TE) based on cyanuric chloride (TCT) and ethylenediamine (EDA) was designed and used for the adsorption of Au(III) from wastewater. It was found that TE showed extremely high selectivity (D = 49,213.46) and adsorption capacity (256.19 mg/g) for Au(III) under acidic conditions. The adsorption rate remained above 90% eVen after five adsorption-desorption cycles. The adsorption process followed the pseudo-first-order kinetic model and the Freundlich isotherm model, suggesting that physical adsorption with a multilayer molecular overlay dominates. Meanwhile, the adsorption mechanism was obtained by DFT calculation and XPS analysis, and the adsorption mechanism was mainly the electrostatic interaction and electron transfer between the protonated N atoms in the adsorbent (TE) and AuCl4-, which resulted in the redox reaction. The whole adsorption process was the result of the simultaneous action of physical and chemical adsorption. In conclusion, the adsorbent material TE shows great potential for gold adsorption and recovery.

2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731444

RESUMO

With the increase of hexavalent Cr(VI) wastewater discharged from industrial production, it seriously pollutes water bodies and poses a risk to human health. Adsorption is used as an effective means to treat Cr(VI), but its effectiveness is affected by pH, and the adsorption performance decreases when acidity is strong. Furthermore, research on the mechanism of Cr(VI) adsorption using DFT calculations needs to be developed. This study focuses on the development of magnetically responsive core-shell nano-ion imprinted materials (Fe3O4@GO@IIP) through magnetic separation and surface imprinting techniques. Characterization techniques including FT-IR, XRD, and EDS confirmed the core-shell nanostructure of Fe3O4@GO@IIP. Batch adsorption experiments and model simulations demonstrated the exceptional adsorption capacity of Fe3O4@GO@IIP for Cr(VI) in strongly acidic solutions (pH = 1), reaching a maximum of 89.18 mg/g. The adsorption mechanism was elucidated through XPS and DFT calculations, revealing that Fe3O4@GO@IIP operates through electrostatic interactions and chemical adsorption, with charge transfer dynamics quantified during the process. This research provides new insights for addressing Cr(VI) treatment in highly acidic environments.

3.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731541

RESUMO

The recovery of Au(III) from solution using adsorbents in the form of granules or powders is challenging due to issues such as instability during the recovery process or mass loss caused by small particle size. This study introduces a PEI-TCT/PVDF composite membrane designed to intercept and capture Au(III) in wastewater. Experimental results demonstrated that the PEI-TCT/PVDF membrane exhibits a broad pH range (1-8) and a high retention efficiency for Au(III) of 97.8%, with a maximum adsorption capacity of 294.5 mg/g. The mechanism of Au(III) adsorption on the PEI-TCT/PVDF membrane was mainly through electrostatic adsorption, which caused AuCl4- to aggregate on the surface of the membrane and gradually reduced to Au0 and Au+. Furthermore, the membrane can be entirely regenerated within 20 min and maintains its performance in subsequent adsorption cycles. This study highlights the potential of PEI-TCT/PVDF membranes for the recovery of precious Au(III).

4.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894617

RESUMO

Designing high-performance materials for the detection or removal of toxic decomposition gases of sulfur hexafluoride is crucial for both environmental monitoring and human health preservation. Based on first-principles calculations, the adsorption performance and gas-sensing properties of unsubstituted phthalocyanine (H2Pc) and H2Pc doped with 4d transition metal atoms (TM = Tc and Ru) towards five characteristic decomposition components (HF, H2S, SO2, SOF2, and SO2F2) were simulated. The findings indicate that both the TcPc and RuPc monolayers are thermodynamically and dynamically stable. The analysis of the adsorption energy indicates that H2S, SO2, SOF2, and SO2F2 underwent chemisorption on the TcPc monolayer. Conversely, the HF molecules were physisorbed through interactions with H atoms. The chemical adsorption of H2S, SO2, and SOF2 occurred on the RuPc monolayer, while the physical adsorption of HF and SO2F2 molecules was observed. Moreover, the microcosmic mechanism of the gas-adsorbent interaction was elucidated by analyzing the charge density differences, electron density distributions, Hirshfeld charges, and density of states. The TcPc and RuPc monolayers exhibited excellent sensitivity towards H2S, SO2, and SOF2, as evidenced by the substantial alterations in the band gaps and work functions of the TcPc and RuPc nanosheets. Our calculations hold significant value for exploring the potential chemical sensing applications of TcPc and RuPc monolayers in gas sensing, with a specific focus on detecting sulfur hexafluoride.

5.
Heliyon ; 8(11): e11717, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439737

RESUMO

In order to realize the multifunctional purpose, the rear column of the car transporter is replaced by a lifting mechanism which can be regarded as a four-bar mechanism. However, for the multifunctional car transporter, lifting difficulty and lifting lock occur shortly after the beginning of lifting. Dynamic analysis of the lifting mechanism is carried out, and the computational results reveal that the unreasonable structure of the lifting mechanism is the main reason for the above problems. In order to overcome lifting difficulty and lifting lock, and to improve lifting performance, a back push bar combined lifting mechanism is proposed to replace the original lifting mechanism, and dynamic analysis and finite element analysis (FEA) are carried out in both lifting mechanisms. After using the back push bar combined lifting mechanism, the numerical results show that the required hydraulic cylinder thrust is reduced to a certain degree, and the horizontal pulling force imposed on the front column by the upper platform is declined sharply; the lifting test shows that the lifting process becomes fluent and labor-saving.

6.
ACS Omega ; 7(46): 42105-42114, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440113

RESUMO

The hydrochlorination process is a necessary technological step for the production of polycrystalline silicon using the Siemens method. In this work, the adsorption behaviors of silicon tetrachloride (SiCl4), silicon dichloride (SiCl2), dichlorosilane (SiH2Cl2), trichlorosilane (SiHCl3), HCl, and H2 on the Si(100) surface were investigated by first-principles calculations. The different adsorption sites and adsorption orientations were taken into account. The adsorption energy, charge transfer, and electronic properties of different adsorption systems were systematically analyzed. The results show that all of the molecules undergo dissociative chemisorption at appropriate adsorption sites, and SiHCl3 has the largest adsorption strength. The analysis of charge transfer indicates that all of the adsorbed molecules behave as electron acceptors. Furthermore, strong interactions can be found between gas molecules and the Si(100) surface as proved by the analysis of electronic properties. In addition, SiCl2 can be formed by the dissociation of SiCl4, SiH2Cl2, and SiHCl3. The transformation process from SiCl4 to SiCl2 is exothermic without any energy barrier. While SiH2Cl2 and SiHCl3 can be spontaneously dissociated into SiHCl2, SiHCl2 should overcome about 110 kJ/mol energy barrier to form SiCl2. Our works can provide theoretical guidance for hydrochlorination of SiCl4 in the experimental method.

7.
ACS Omega ; 7(25): 21994-22002, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785291

RESUMO

Research into a gas sensing material with excellent performance to detect or remove toxic phosgene (COCl2) is of great significance to environmental and biological protection. In the present work, the adsorption performance of COCl2 on pristine phthalocyanine (Pc) and metal-decorated Pc (MePc, Me = Cu, Ga, and Ru) monolayers was studied by first-principles calculations. The results show that the absorption process of COCl2 on pristine Pc and CuPc both belong to physisorption, indicating that they are not suitable gas sensing materials for COCl2. When Pc sheets are decorated by Ga and Ru atoms, the adsorption of COCl2 is changed into chemisorption, and the corresponding adsorption energies are -0.57 and -0.50 eV for GaPc and RuPc, respectively. The microcosmic mechanism between COCl2 and adsorbents (GaPc, RuPc) was clarified by the analysis of the density of states, the charge density difference, and the Hirshfeld charge. In addition, the COCl2 adsorption results in a significant conductivity variation of the RuPc monolayer, demonstrating it exhibits a high sensitivity to the COCl2 molecule. Meanwhile, quick desorption processes were noticed at various temperatures for the COCl2/RuPc system. Consequently, the RuPc monolayer can be considered as a potential candidate for phosgene sensors because of the moderate adsorption strength, high sensitivity, and fast desorption speed.

8.
ACS Omega ; 5(21): 12067-12072, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548385

RESUMO

Cocrystallization has been applied widely for material synthesis. Recently cocrystal of organic molecules has been developing rapidly, taking the advantages of the flexibility and self-assembly of organic molecules. Here we report an experimental study of a cocrystal of copper-phthalocyanines and fluorinated ones. We have grown the samples via the vapor-phase deposition of the mixture with different mass ratios from 1:13.5 to 6:1. As suggested by our scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy, new crystal structures and morphologies through our novel strategy for the cocrystallization of these molecules have been found. Our work will provide a solid foundation to systematically synthesize the cocrystal of phthalocyanine molecules with new crystal structures, thus providing the opportunity to advance material properties.

9.
Huan Jing Ke Xue ; 32(4): 936-42, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21717729

RESUMO

The odor pollution of landfill is one of seriously pollutions in city ambient area. Main pollution points in the landfill area have been detected by preliminary research. For a particular purpose to recover the materials changing in odor dispersion process and to find out odor indication material, GC-MS method was used to detect materials in the different site at down wind direction. Then, similarity coefficient of VOCs (volatile organic compounds) composition between every two site were calculated and compared to look for changing regular of odor pollution in diffusion process. The odor pollution indictor material has be found in the materials that appeared in down wind direction of operation area and compared its' olfaction threshold. The results show that: there have 19 types of common materials in the landfill area, including monoaromatics, alkanes and halogenated compounds; Materials in the air of operation area site has marked influence on down windward direction air of landfill, and m-xlyene has been selected as odor pollution indictor of landfill air by this research.


Assuntos
Poluentes Atmosféricos/análise , Odorantes/análise , Eliminação de Resíduos , Compostos Orgânicos Voláteis/análise , China , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA