Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2311031, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597244

RESUMO

Fluorescent proteins (FPs) are heralded as a paradigm of sustainable materials for photonics/optoelectronics. However, their stabilization under non-physiological environments and/or harsh operation conditions is the major challenge. Among the FP-stabilization methods, classical sol-gel is the most effective, but less versatile, as most of the proteins/enzymes are easily degraded due to the need of multi-step processes, surfactants, and mixed water/organic solvents in extreme pH. Herein, sol-gel chemistry with archetypal FPs (mGreenLantern; mCherry) is revisited, simplifying the method by one-pot, surfactant-free, and aqueous media (phosphate buffer saline pH = 7.4). The synthesis mechanism involves the direct reaction of the carboxylic groups at the FP surface with the silica precursor, generating a positively charged FP intermediate that acts as a seed for the formation of size-controlled mesoporous FP@SiO2 nanoparticles. Green-/red-emissive (single-FP component) and dual-emissive (multi-FPs component; kinetic studies not required) FP@SiO2 are prepared without affecting the FP photoluminescence and stabilities (>6 months) under dry storage and organic solvent suspensions. Finally, FP@SiO2 color filters are applied to rainbow and white bio-hybrid light-emitting diodes featuring up to 15-fold enhanced stabilities without reducing luminous efficacy compared to references with native FPs. Overall, an easy, versatile, and effective FP-stabilization method is demonstrated in FP@SiO2 toward sustainable protein lighting.

2.
ACS Nano ; 17(21): 21206-21215, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902649

RESUMO

The application of fluorescent proteins (FPs) in optoelectronics is hindered by the need for effective protocols to stabilize them under device preparation and operational conditions. Factors such as high temperatures, irradiation, and organic solvent exposure contribute to the denaturation of FPs, resulting in a low device performance. Herein, we focus on addressing the photoinduced heat generation associated with FP motion and rapid heat transfer. This leads to device temperatures of approximately 65 °C, causing FP-denaturation and a subsequent loss of device functionality. We present a FP stabilization strategy involving the integration of electrostatically self-assembled FP-apoferritin cocrystals within a silicone-based color down-converting filter. Three key achievements characterize this approach: (i) an engineering strategy to design positively supercharged FPs (+22) without compromising photoluminescence and thermal stability compared to their native form, (ii) a carefully developed crystallization protocol resulting in highly emissive cocrystals that retain the essential photoluminescence features of the FPs, and (iii) a strong reduction of the device's working temperature to 40 °C, leading to a 40-fold increase in Bio-HLEDs stability compared to reference devices.

3.
Adv Mater ; 35(48): e2303993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572026

RESUMO

Implementing proteins in optoelectronics represents a fresh idea toward a sustainable new class of materials with bio-functions that can replace environmentally unfriendly and/or toxic components without losing device performance. However, their native activity (fluorescence, catalysis, and so on) is easily lost under device fabrication/operation as non-native environments (organic solvents, organic/inorganic interfaces, and so on) and severe stress (temperature, irradiation, and so on) are involved. Herein, a gift bow genetically-encoded macro-oligomerization strategy is showcased to promote protein-protein solid interaction enabling i) high versatility with arbitrary proteins, ii) straightforward electrostatic driven control of the macro-oligomer size by ionic strength, and iii) stabilities over months in pure organic solvents and stress scenarios, allowing to integrate them into classical water-free polymer-based materials/components for optoelectronics. Indeed, rainbow-/white-emitting protein-based light-emitting diodes are fabricated, attesting a first-class performance compared to those with their respective native proteins: significantly enhanced device stabilities from a few minutes up to 100 h keeping device efficiency at high power driving conditions. Thus, the oligomerization concept is a solid bridge between biological systems and materials/components to meet expectations in bio-optoelectronics, in general, and lighting schemes, in particular.


Assuntos
Iluminação , Polímeros , Fluorescência , Solventes
4.
Adv Sci (Weinh) ; 10(16): e2300069, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37013464

RESUMO

Stable and efficient high-power biohybrid light-emitting diodes (Bio-HLEDs) using fluorescent proteins (FPs) in photon downconverting filters have not been achieved yet, reaching best efficiencies of 130 lm W-1 stable for >5 h. This is related to the rise of the device temperature (70-80 °C) caused by FP-motion and quick heat-transmission in water-based filters, they lead to a strong thermal emission quenching followed by the quick chromophore deactivation via photoinduced H-transfer. To tackle both issues at once, this work shows an elegant concept of a new FP-based nanoparticle, in which the FP core is shielded by a SiO2 -shell (FP@SiO2 ) with no loss of the photoluminescence figures-of-merit over years in foreign environments: dry powder at 25 °C (ambient) or constant 50 °C, as well as suspensions in organic solvents. This enables the preparation of water-free photon downconverting coatings with FP@SiO2 , realizing on-chip high-power Bio-HLEDs with 100 lm W-1 stable for >120 h. Both thermal emission quenching and H-transfer deactivation are suppressed, since the device temperature holds <40 °C and remote high-power Bio-HLEDs exhibit final stabilities of 130 days compared to reference devices with water-based FP@SiO2 (83 days) and FP-polymer coatings (>100 h). Hence, FP@SiO2 is a new paradigm toward water-free zero-thermal-quenching biophosphors for first-class high-power Bio-HLEDs.

5.
Dalton Trans ; 52(19): 6360-6374, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37083057

RESUMO

By using N,N-dibutyl-2,2'-bipyridine-4,4'-dicarboxamide as a diimine (dbbpy) and distinctive cyclometalated groups, this work reports a new family of cationic phosphorescent Ir(III) cyclometalated [Ir(C^N)2(N^N)]X compounds [C^N = difluorophenylpyridine (dfppy) a, 2,6-difluoro-3-(pyridin-2-yl)benzaldehyde (CHO-dfppy) b, and 2,6-difluoro-3-pyridin-2-yl-benzoic acid (COOH-dfppy) c; X = Cl-2a,b,c-Cl; X = PF6-2b,c-PF6]. For comparative purposes, the related complex [Ir(dfppy)2(H2dcbpy)]+ (3a-PF6) incorporating 3,3'-dicarboxy-2,2'-bipyridine as an auxiliary ligand (N^N = H2dcbpy) is also presented. All complexes have been fully characterized and their photophysical properties were investigated in detail. The theoretically calculated results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) studies indicate that luminescence is derived from mixed 3ML'CT (Ir → N^N)/3LL'CT (C^N → N^N) excited states with the predominant metal-to-diimine charge transfer character. Their antineoplastic activity against tumour cell lines A549 (lung carcinoma) and HeLa (cervix carcinoma), as well as the nontumor BEAS-2B (bronchial epithelium) cell line was assessed and fluorescence microscopy studies were performed for their cellular localization. Among them, 2a-Cl exhibited the most potent anticancer activity, being higher than cisplatin. However, 2b-Cl and 2c-Cl,-PF6 were the least toxic, while 2b-PF6 and 3a-PF6 exhibited only moderate activity. Confocal microscopy studies for 2a-Cl suggest that complexes localize preferentially in the lysosomes and to a lesser extent in the cytoplasm, but ultimately causing damage to the mitochondria. Finally, the potential photodynamic behaviour of scarcely toxic complexes 2b-Cl, 2b-PF6, 2c-Cl and 3a-PF6 was also studied.


Assuntos
Antineoplásicos , Irídio , Humanos , 2,2'-Dipiridil , Luminescência , Antineoplásicos/farmacologia , Cisplatino
6.
Dalton Trans ; 49(31): 10983-10993, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32725015

RESUMO

1,4,7-Triazacyclononane (TACN) has been used for the first time to support Au(i)M [M = Tl(i), Ag(i)] metallophilic interactions in the formation of heteronuclear gold(i) complexes having luminescence properties. The compounds {[{Au(C6Cl5)2}Tl(TACN)]2}n (1), [{Au(C6F5)2}Tl(TACN)] (2), [{Au(C6Cl5)2}Ag(TACN)] (3), and [{Au(C6F5)2}{Ag(TACN)}2Au(C6F5)2] (4) have been synthesized by reacting TACN and the polymeric starting organometallic gold(i) compounds [{Au(C6X5)2}M]n (M = Ag(i), Tl(i); X = Cl, F) in a 1 : 1 molar ratio, in THF. 1, 3 and 4 have also been structurally characterized and their optical properties explained on the basis of their structural features with the support of TD-DFT calculations.

7.
Inorg Chem ; 59(9): 6398-6409, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315169

RESUMO

Reaction of the heterometallic complex [{Au(C6F5)2}Tl]n with the quinoline pendant arm derivatives L1 and L2 of the mixed donor macrocycles [12]aneNS2O and PhenNS2 affords the new Au(I)/Tl(I) complexes [{Au(C6F5)2}Tl(L1)] (1), [{Au(C6F5)2}Tl(L2)] (2), [{Au(C6F5)2Tl}{Au(C6F5)2Tl(L1)}]2 (3), and [{Au(C6F5)2Tl}{Au(C6F5)2Tl(L2)}]n (4) depending on the reaction molar ratios used. These complexes present different optical properties strictly related to their structural features and to the presence of Au(I)···Tl(I) metallophilic interactions, which are finely tuned by the coordinating quinoline moiety and have been studied experimentally and theoretically via TD-DFT calculations.

8.
Inorg Chem ; 57(17): 11099-11112, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30137971

RESUMO

The reactivity of the polymeric gold(I)/silver(I) compound [Au2Ag2(C6F5)4(OEt2)2] n toward the 12-membered mixed-donor macrocyclic ligands 1,7-diaza-4,10-dithiacyclododecane (L1), 1-aza-4,7,10-trithiacyclododecane (L2), N-quinolinylmethyl-1-aza-4,7,10-trithiacyclododecane (L3), and N, N'-bis(quinolinylmethyl)-1,7-diaza-4,10-dithiacyclododecane (L4) was studied. The reactions were carried out using different molar ratios depending on the coordination properties of the ligands, which were modified by changing the donor atoms present in the macrocyclic framework (sulfur or nitrogen) or by linking one or two methylquinoline pendant-arms at the secondary nitrogen atom(s). X-ray diffraction analysis of the new complexes obtained show a nuclearity that increases on increasing the number of donor atoms in the ligands. The rich structural diversity observed determines different optical responses when the complexes are irradiated with UV-vis light in the solid state and in THF solution. The study of the optical properties reveals that in complexes for which the luminescence is due to metal-metal interactions, higher emission wavelengths are observed as the number of these metallophilic contacts increases, while the luminescence of ionic complexes has its origin in the macrocyclic ligands. TD-DFT calculations were carried out to verify the origin of these interesting structural-optical property relationships.

9.
Chemistry ; 24(52): 13740-13743, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30091480

RESUMO

The crystal structure of the polymeric complex [Au5 Ag2 Tl3 (C6 F5 )10 (L1 )2 ]n (L1 =1-aza-4,10-dithia-7-oxacyclododecane) displays heterotrimetallic Ag⋅⋅⋅Au⋅⋅⋅Tl moieties and is held by unsupported metallophilic interactions. This complex emits at 500 nm in the solid state. Ab initio calculations show that the large thermodynamic stability that helps the formation of this heterotrimetallic system arises from the combination of dispersive forces and a very large dipole moment in the supramolecular arrangement.

10.
Inorg Chem ; 56(20): 12551-12563, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28949529

RESUMO

Reaction of the heterometallic complexes [{Au(C6X5)2}Tl]n (X = Cl, F) with equimolecular amounts of the N,S-mixed-donor crown ethers [12]aneNS3 or [12]aneN2S2 affords the new Au(I)/Tl(I) derivatives [{Au(C6Cl5)2}{Tl(L)}2][Au(C6Cl5)2] [L = [12]aneNS3 (1), [12]aneN2S2 (2)], [{Au(C6F5)2}Tl([12]aneNS3)]2 (3), or [{Au(C6F5)2}Tl([12]aneN2S2)]n (4). These complexes display the same Au/Tl metal ratio, but different structural arrangements. While the chlorinated derivatives 1 and 2·2THF display an ionic structure, the crystal structure of 3 contains neutral tetranuclear Au2Tl2 units, and complex 4 displays a polymeric nature and is the only one that does not show unsupported Au···Tl interactions. The lack of this interaction is responsible for the absence of luminescence in this last case. The optical properties of 1 and 3 in the solid state have been studied experimentally and theoretically, concluding that their luminescence has its origin in the Au···Tl interactions, and this is also influenced by their number and strength. DFT and TD-DFT theoretical calculations on model systems of complexes 1, 3, and 4 have been carried out in order to confirm the origin of their luminescence or its absence, as well as to justify their emission energies in spite of their different solid state structures.

11.
Chemistry ; 19(43): 14639-53, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24027223

RESUMO

Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg(2+) ion binding, the development of fluorescence-based devices for in-field Hg(2+) detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg(2+) ions in MeCN/H2 O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg(2+) ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg(2+) ions in natural water samples.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Mercúrio/análise , Nanopartículas/química , Espectrometria de Fluorescência , Animais , Células COS , Chlorocebus aethiops , Íons/química , Microscopia Confocal , Polietilenoglicóis/química , Cloreto de Polivinila/química , Teoria Quântica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA