Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Anim Microbiome ; 5(1): 35, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461084

RESUMO

BACKGROUND: Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS: We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.

2.
Sci Rep ; 12(1): 15080, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064754

RESUMO

The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Fezes/microbiologia , Fungos/genética , RNA Ribossômico 16S/genética , Saccharomycetales , Suínos
3.
Transbound Emerg Dis ; 69(6): 3216-3224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35881701

RESUMO

African swine fever virus (ASFV) causes high case fatality in pigs and a trade-limiting disease resulting in significant economic losses to pork production. ASFV is resistant to environmental degradation and maintains infectivity in feed ingredients exposed to transoceanic shipment conditions. As ASFV is transmissible through consumption of contaminated feed, the objective of this study was to evaluate the stability of ASFV Georgia 2007 in three feed matrices (complete feed, soybean meal, ground corncobs) exposed to three environmental storage temperatures (40°F, 68°F, 95°F) for up to 365 days. ASFV DNA was highly stable and detectable by qPCR in almost all feed matrices through the conclusion of each study. Infectious ASFV was most stable in soybean meal, maintaining infectivity for at least 112 days at 40°F, at least 21 days at 68°F and at least 7 days at 95°F. These data help define risk of ASFV introduction and transmission through feed ingredients.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Temperatura
4.
Transbound Emerg Dis ; 69(1): 88-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34473909

RESUMO

Animal feed and feed ingredients have recently been investigated as sources of pathogen introduction to farms and as a potential source of infection to animals post-consumption of contaminated feed. Survival of several viruses for a prolonged period has been demonstrated in feed. Here, we determined the rate of decay of Senecavirus A (SVA) in swine feed ingredients as a function of time and temperature and established half-life estimates for the virus. Select feed ingredients were spiked with a constant amount of SVA (105 median tissue culture infectious dose 50) and incubated at 4, 15 and 30°C for up to 91 days. Virus viability and the presence of viral RNA were assessed in samples collected over time. At the three different temperatures investigated, dried distillers' grains with solubles (DDGS) and soybean meal (SBM) provided the most stable matrices for SVA, resulting in half-lives of 25.6 and 9.8 days, respectively. At 30°C, SVA was completely inactivated in all feed ingredients and in the control sample, which did not contain a feed matrix. Although virus infectivity was lost, viral RNA remained stable and at consistent levels throughout the experimental period. Additionally, the ability of SVA to infect swine via ingestion of contaminated feed was investigated in 3-week-old, weaned pigs. Animals were provided complete feed spiked with three concentrations of SVA (105 , 106 and 107 per 200 g of feed) and allowed to naturally consume the contaminated feed. This procedure was repeated for three consecutive days. Infection of pigs through consumption of contaminated feed was confirmed by virus neutralization assay and the detection of SVA in serum, feces and in the tonsil of exposed animals by real-time reverse transcriptase PCR. Our findings demonstrate that feed matrices are able to extend the survival of SVA, protecting the virus from decay. Additionally, we demonstrated that consumption of contaminated feed can lead to productive SVA infection.


Assuntos
Ração Animal/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae , Doenças dos Suínos , Ração Animal/análise , Animais , Contaminação de Alimentos , Suínos , Doenças dos Suínos/virologia
5.
Transbound Emerg Dis ; 69(1): 72-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34237198

RESUMO

Transboundary movement of animal feed and feed ingredients has been identified as a route for pathogen incursions. While imports of animals and animal-derived products are highly regulated for the purpose of infectious disease prevention, there has been less consideration of the viability of infectious agents in inanimate products, such as feed. This study investigated the ability of foot-and-mouth disease virus (FMDV) to remain infectious as a contaminant of commercial whole pig feed and select pig feed ingredients, and to establish the minimum infectious dose (MIDF ) required to cause foot-and-mouth disease (FMD) in pigs that consumed contaminated feed. FMDV viability in vitro varied depending on virus strain, feed product, and storage temperature, with increased duration of infectivity in soybean meal compared to pelleted whole feed. Specifically, both strains of FMDV evaluated remained viable through to the end of the 37 day observation period in experimentally contaminated soybean meal stored at 4 or 20°C . The MIDF for pigs consuming contaminated feed varied across virus strains and exposure duration in the range of 106.2 to 107 TCID50 . The ability of FMDV to cause infection in exposed pigs was mitigated by pre-treatment of feed with two commercially available feed additives, based on either formaldehyde (SalCURB®) or lactic acid (Guardian™). Our findings demonstrate that FMDV may remain infectious in pig feed ingredients for durations compatible with transoceanic transport. Although the observed MIDF was relatively high, variations in feeding conditions and biophysical characteristics of different virus strains may alter the probability of infection. These findings may be used to parameterize modelling of the risk of FMDV incursions and to regulate feed importation to minimize the risk of inadvertent importation.


Assuntos
Ração Animal/virologia , Contaminação de Alimentos , Febre Aftosa , Doenças dos Suínos , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/transmissão , Vírus da Febre Aftosa , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão
6.
Transbound Emerg Dis ; 69(1): 97-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34132048

RESUMO

African swine fever virus (ASFV) is a current threat to global pork production due to its high case fatality rate, lack of efficacious vaccine and recent transboundary spread into new regions of the world. Preventing introduction and further spread of ASFV is critical for countries currently negative for the virus. ASFV is stable in feed ingredients subjected to transoceanic conditions and transmission occurs through the natural consumption of contaminated feed. In this study, we investigated the use of feed dust collected from experimentally inoculated feed as a novel diagnostic sample type for ASFV detection. Moist swabs were used to collect dust from creep feeders after natural consumption of feed inoculated with 3.1-5.4 log10 TCID50 /g ASFV Georgia 2007 in the presence and absence of antimicrobial feed additives. Results validate the potential use of feed dust swabs as a novel diagnostic surveillance tool for detection and quantification of viral nucleic acid and infectious virus titre in ASFV-contaminated feed.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Poeira , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos
7.
Transbound Emerg Dis ; 69(5): 2727-2734, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34914859

RESUMO

African swine fever virus (ASFV) is a global threat to swine production and sustainable pork supply. Without a commercially available vaccine, prevention of ASFV entry and spread is reliant on biosecurity and early detection of infection. Although ASFV ingestion in swill or feed by naïve pigs is a likely route of initial introduction, controlled experimental studies rarely utilize natural consumption as the infection route. In the current study, we utilized biological samples collected from pigs 5 days after natural consumption of ASFV in feed and liquid to assess diagnostic sensitivity for early detection of virus infection. Biological samples (serum, spleen, lymph nodes, tonsils, and faeces) were assessed for the presence of ASFV using quantitative PCR and virus isolation. Statistical methods modelled the detection sensitivity of each sample type with each diagnostic assay in individual samples. Our results provide important information that can be incorporated into ASFV surveillance programs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Carne de Porco , Doenças dos Suínos , Vírus da Febre Suína Africana/genética , Animais , Fezes , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos
8.
Genet Sel Evol ; 53(1): 91, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875996

RESUMO

BACKGROUND: The possibility of using antibody response (S/P ratio) to PRRSV vaccination measured in crossbred commercial gilts as a genetic indicator for reproductive performance in vaccinated crossbred sows has motivated further studies of the genomic basis of this trait. In this study, we investigated the association of haplotypes and runs of homozygosity (ROH) and heterozygosity (ROHet) with S/P ratio and their impact on reproductive performance. RESULTS: There was no association (P-value ≥ 0.18) of S/P ratio with the percentage of ROH or ROHet, or with the percentage of heterozygosity across the whole genome or in the major histocompatibility complex (MHC) region. However, specific ROH and ROHet regions were significantly associated (P-value ≤ 0.01) with S/P ratio on chromosomes 1, 4, 5, 7, 10, 11, 13, and 17 but not (P-value ≥ 0.10) with reproductive performance. With the haplotype-based genome-wide association study (GWAS), additional genomic regions associated with S/P ratio were identified on chromosomes 4, 7, and 9. These regions harbor immune-related genes, such as SLA-DOB, TAP2, TAPBP, TMIGD3, and ADORA. Four haplotypes at the identified region on chromosome 7 were also associated with multiple reproductive traits. A haplotype significantly associated with S/P ratio that is located in the MHC region may be in stronger linkage disequilibrium (LD) with the quantitative trait loci (QTL) than the previously identified single nucleotide polymorphism (SNP) (H3GA0020505) given the larger estimate of genetic variance explained by the haplotype than by the SNP. CONCLUSIONS: Specific ROH and ROHet regions were significantly associated with S/P ratio. The haplotype-based GWAS identified novel QTL for S/P ratio on chromosomes 4, 7, and 9 and confirmed the presence of at least one QTL in the MHC region. The chromosome 7 region was also associated with reproductive performance. These results narrow the search for causal genes in this region and suggest SLA-DOB and TAP2 as potential candidate genes associated with S/P ratio on chromosome 7. These results provide additional opportunities for marker-assisted selection and genomic selection for S/P ratio as genetic indicator for litter size in commercial pig populations.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Formação de Anticorpos , Feminino , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Locos de Características Quantitativas , Sus scrofa/genética , Suínos/genética , Vacinação
9.
Nanomedicine (Lond) ; 16(21): 1857-1872, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282923

RESUMO

The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 µg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of ß-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.


Assuntos
Antivirais , Nanopartículas , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Luminescência , Camundongos , Suínos , Zinco/farmacologia
10.
Animals (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803495

RESUMO

Since the 2013 introduction of porcine epidemic diarrhea virus into the United States (U.S.), feed and feed ingredients have been recognized as potential routes for the introduction and transmission of foreign animal diseases of swine. Feed ingredients for swine diets are commodities traded worldwide, and the U.S. imports thousands of metric tons of feed ingredients each year from countries with circulating foreign animal diseases. African swine fever (ASF) is the most significant foreign animal disease threat to U.S. swine production, and the recent introduction of ASF into historically negative countries has heightened the risk for further spread. Laboratory investigations have characterized the stability of the ASF virus (ASFV) in feed ingredients subjected to transoceanic shipment conditions, ASFV transmissibility through the natural consumption of plant-based feed, and the mitigation potential of certain feed additives to inactivate ASFV in feed. This review describes the current knowledge of feed as a risk for swine viruses and the opportunities for mitigating the risk to protect U.S. pork production and the global swine population from ASF and other foreign animal diseases.

11.
J Anim Sci ; 99(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33782709

RESUMO

Antibody response, measured as sample-to-positive (S/P) ratio, to porcine reproductive and respiratory syndrome virus (PRRSV) following a PRRSV-outbreak (S/POutbreak) in a purebred nucleus and following a PRRSV-vaccination (S/PVx) in commercial crossbred herds have been proposed as genetic indicator traits for improved reproductive performance in PRRSV-infected purebred and PRRSV-vaccinated crossbred sows, respectively. In this study, we investigated the genetic relationships of S/POutbreak and S/PVx with performance at the commercial (vaccinated crossbred sows) and nucleus level (non-infected and PRRSV-infected purebred sows), respectively, and tested the effect of previously identified SNP for these indicator traits. Antibody response was measured on 541 Landrace sows ~54 d after the start of a PRRSV outbreak, and on 906 F1 (Landrace × Large White) gilts ~50 d after vaccination with a commercial PRRSV vaccine. Reproductive performance was recorded for 711 and 428 Landrace sows before and during the PRRSV outbreak, respectively, and for 811 vaccinated F1 animals. The estimate of the genetic correlation (rg) of S/POutbreak with S/PVx was 0.72 ± 0.18. The estimates of rg of S/POutbreak with reproductive performance in vaccinated crossbred sows were low to moderate, ranging from 0.05 ± 0.23 to 0.30 ± 0.20. The estimate of rg of S/PVx with reproductive performance in non-infected purebred sows was moderate and favorable with number born alive (0.50 ± 0.23) but low (0 ± 0.23 to -0.11 ± 0.23) with piglet mortality traits. The estimates of rg of S/PVx were moderate and negative (-0.38 ± 0.21) with number of mummies in PRRSV-infected purebred sows and low with other traits (-0.30 ± 0.18 to 0.05 ± 0.18). Several significant associations (P0 > 0.90) of previously reported SNP for S/P ratio (ASGA0032063 and H3GA0020505) were identified for S/P ratio and performance in non-infected purebred and PRRSV-exposed purebred and crossbred sows. Genomic regions harboring the major histocompatibility complex class II region significantly contributed to the genetic correlation of antibody response to PRRSV with most of the traits analyzed. These results indicate that selection for antibody response in purebred sows following a PRRSV outbreak in the nucleus and for antibody response to PRRSV vaccination measured in commercial crossbred sows are expected to increase litter size in purebred and commercial sows.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Formação de Anticorpos , Feminino , Genômica , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Gravidez , Suínos , Vacinação/veterinária
12.
Vet Microbiol ; 254: 109018, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33639341

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most significant pathogens affecting swine. Co-infections are common and result in respiratory disease and reduced weight gain in growing pigs. Although PRRS modified live virus (MLV) vaccines are widely used to decrease PRRS-associated losses, they are generally considered inadequate for disease control. The gut microbiome provides an alternative strategy to enhance vaccine efficacy and improve PRRS control. The objective of this study was to identify gut microbiome characteristics associated with improved outcome in pigs immunized with a PRRS MLV and co-challenged with PRRSV and PCV2b. Twenty-eight days after vaccination and prior to co-challenge, fecal samples were collected from an experimental population of 50 nursery pigs. At 42 days post-challenge, 20 pigs were retrospectively identified as having high or low growth outcomes during the post-challenge period. Gut microbiomes of the two outcome groups were compared using the Lawrence Livermore Microbial Detection Array (LLMDA) and 16S rDNA sequencing. High growth outcomes were associated with several gut microbiome characteristics, such as increased bacterial diversity, increased Bacteroides pectinophilus, decreased Mycoplasmataceae species diversity, higher Firmicutes:Bacteroidetes ratios, increased relative abundance of the phylum Spirochaetes, reduced relative abundance of the family Lachnospiraceae, and increased Lachnospiraceae species C6A11 and P6B14. Overall, this study identifies gut microbiomes associated with improved outcomes in PRRS vaccinated pigs following a polymicrobial respiratory challenge and provides evidence towards the gut microbiome playing a role in PRRS vaccine efficacy.


Assuntos
Circovirus/imunologia , Coinfecção/veterinária , Microbioma Gastrointestinal , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Coinfecção/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinação , Potência de Vacina , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem
13.
Transbound Emerg Dis ; 68(2): 477-486, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32613713

RESUMO

African swine fever (ASF) is currently considered the most significant global threat to pork production worldwide. Disease caused by the ASF virus (ASFV) results in high case fatality of pigs. Importantly, ASF is a trade-limiting disease with substantial implications on both global pork and agricultural feed commodities. ASFV is transmissible through natural consumption of contaminated swine feed and is broadly stable across a wide range of commonly imported feed ingredients and conditions. The objective of the current study was to investigate the efficacy of medium-chain fatty acid and formaldehyde-based feed additives in inactivating ASFV. Feed additives were tested in cell culture and in feed ingredients under a transoceanic shipment model. Both chemical additives reduced ASFV infectivity in a dose-dependent manner. This study provides evidence that chemical feed additives may potentially serve as mitigants for reducing the risk of ASFV introduction and transmission through feed.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Febre Suína Africana/prevenção & controle , Ração Animal/análise , Antivirais/administração & dosagem , Febre Suína Africana/virologia , Animais , Chlorocebus aethiops , Ácidos Graxos , Aditivos Alimentares , Suínos , Células Vero
14.
Transbound Emerg Dis ; 68(4): 2603-2609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33064921

RESUMO

African swine fever virus (ASFV) can survive in soya-based products for 30 days with T ½ ranging from 9.6 to 12.9 days in soya bean meals and soya oil cake. As the United States imports soya-based products from several ASFV-positive countries, knowledge of the type and quantity of these specific imports, and their ports of entry (POE), is necessary information to manage risk. Using the data from the International Trade Commission Harmonized Tariff Schedule website in conjunction with pivot tables, we analysed imports across air, land and sea POE of soya-based products from 43 ASFV-positive countries to the United States during 2018 and 2019. In 2018, 104,366 metric tons (MT) of soya-based products, specifically conventional and organic soya bean meal, soya beans, soya oil cake and soya oil were imported from these countries into the United States via seaports only. The two largest suppliers were China (52.7%, 55,034 MT) and the Ukraine (42.9%, 44,775 MT). In 2019, 73,331 MT entered the United States and 54.7% (40,143 MT) came from the Ukraine and 8.4% (6,182 MT) from China. Regarding POE, 80.9%-83.2% of soya-based imports from China entered the United States at the seaports of San Francisco, CA, and Seattle, WA, while 89.4%-100% entered from the Ukraine via the seaports of New Orleans, LA, and Charlotte, NC. Analysis of five-year trends (2015-2019) of the volume of soya imports from China indicated reduction over time (with a noticeably sharp decrease between 2018 and 2019), and seaport utilization was consistent. In contrast, volume remained high for Ukrainian soya imports, and seaport utilization was inconsistent. Overall, this exercise introduced a new approach to collect objective data on an important risk factor, providing researchers, government officials and industry stakeholders a means to objectively identify and quantify potential channels of foreign animal disease entry into the United States.


Assuntos
Vírus da Febre Suína Africana , Ração Animal/análise , Animais , Comércio , Internacionalidade , Oceanos e Mares , Suínos , Estados Unidos
15.
Transbound Emerg Dis ; 68(2): 833-845, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32706431

RESUMO

The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified during the porcine epidemic diarrhoea virus (PEDV) epidemic in North America. Since that time, various feed additives have been evaluated at the laboratory level to measure their effect on viral viability and infectivity in contaminated feed using bioassay piglet models. While a valid first step, the conditions of these studies were not representative of commercial swine production. Therefore, the purpose of this study was to evaluate the ability of feed additives to mitigate the risk of virus-contaminated feed using a model based on real-world conditions. This new model used an 'ice-block' challenge, containing equal concentrations of porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A (SVA) and PEDV, larger populations of pigs, representative commercial facilities and environments, along with realistic volumes of complete feed supplemented with selected additives. Following supplementation, the ice block was manually dropped into designated feed bins and pigs consumed feed by natural feeding behaviour. After challenge, samples were collected at the pen level (feed troughs, oral fluids) and at the animal level (clinical signs, viral infection, growth rate, and mortality) across five independent experiments involving 15 additives. In 14 of the additives tested, pigs on supplemented diets had significantly greater average daily gain (ADG), significantly lower clinical signs and infection levels, and numerically lower mortality rates compared to non-supplemented controls. In conclusion, the majority of the additives evaluated mitigated the effects of PRRSV 174, PEDV and SVA in contaminated feed, resulting in improved health and performance.


Assuntos
Ração Animal/virologia , Aditivos Alimentares , Doenças dos Suínos/virologia , Viroses/veterinária , Ração Animal/análise , Animais , América do Norte , Vírus da Diarreia Epidêmica Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Doenças dos Suínos/transmissão , Viroses/transmissão , Vírus
16.
Front Genet ; 11: 1011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024439

RESUMO

We proposed to investigate the genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) vaccination and its relationship to reproductive performance in non-PRRSV-infected commercial sows. Nine hundred and six F1 replacement gilts (139 ± 17 days old) from two commercial farms were vaccinated with a commercial modified live PRRSV vaccine. Blood samples were collected about 52 days after vaccination to measure antibody response to PRRSV as sample-to-positive (S/P) ratio and for single-nucleotide polymorphism (SNP) genotyping. Reproductive performance was recorded for up to 807 sows for number born alive (NBA), number of piglets weaned, number born mummified (MUM), number of stillborn (NSB), and number of pre-weaning mortality (PWM) at parities (P) 1-3 and per sow per year (PSY). Fertility traits such as farrowing rate and age at first service were also analyzed. BayesC0 was used to estimate heritability and genetic correlations of S/P ratio with reproductive performance. Genome-wide association study (GWAS) and genomic prediction were performed using BayesB. The heritability estimate of S/P ratio was 0.34 ± 0.05. High genetic correlations (r g) of S/P ratio with farrowing performance were identified for NBA P1 (0.61), PWM P2 (-0.70), NSB P3 (-0.83), MUM P3 (-0.84), and NSB PSY (-0.90), indicating that genetic selection for increased S/P ratio would result in improved performance of these traits. A quantitative trait locus was identified on chromosome 7 (∼25 Mb), at the major histocompatibility complex (MHC) region, explaining ∼30% of the genetic variance for S/P ratio, mainly by SNPs ASGA0032113, H3GA0020505, and M1GA0009777. This same region was identified in the bivariate GWAS of S/P ratio and reproductive traits, with SNP H3GA0020505 explaining up to 10% (for NBA P1) of the genetic variance of reproductive performance. The heterozygote genotype at H3GA0020505 was associated with greater S/P ratio and NBA P1 (P = 0.06), and lower MUM P3 and NSB P3 (P = 0.07). Genomic prediction accuracy for S/P ratio was high when using all SNPs (0.67) and when using only those in the MHC region (0.59) and moderate to low when using all SNPs excluding those in the MHC region (0.39). These results suggest that there is great potential to use antibody response to PRRSV vaccination as an indicator trait to improve reproductive performance in commercial pigs.

17.
Transbound Emerg Dis ; 67(6): 2365-2371, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32359207

RESUMO

The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified in 2014 during the porcine epidemic diarrhoea virus epidemic in North America. Since the identification of this novel risk factor, scientists have conducted numerous studies to understand its relevance. Over the past few years, the body of scientific evidence supporting the reality of this risk has grown substantially. In addition, numerous papers describing actions and interventions designed to mitigate this risk have been published. Therefore, the purpose of this paper is to review the literature on the risk of feed (what do we know) and the protocols developed to reduce this risk (what do we do) in an effort to develop a comprehensive document to raise awareness, facilitate learning, improve the accuracy of risk assessments and to identify knowledge gaps for future studies.


Assuntos
Ração Animal/virologia , Contaminação de Alimentos , Viroses/veterinária , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Contaminação de Alimentos/prevenção & controle , Vírus da Diarreia Epidêmica Suína , Medição de Risco , Fatores de Risco , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão , Estados Unidos/epidemiologia , Viroses/epidemiologia , Viroses/prevenção & controle , Viroses/transmissão
18.
Transbound Emerg Dis ; 67(4): 1623-1632, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31999072

RESUMO

Classical swine fever virus (CSFV) and pseudorabies virus (PRV) are two of the most significant trade-limiting pathogens affecting swine worldwide. Both viruses are endemic to China where millions of kilograms of feed ingredients are manufactured and subsequently imported into the United States. Although stability and oral transmission of both viruses through contaminated pork products has been demonstrated as a risk factor for transboundary spread, stability in animal feed ingredients had yet to be investigated. The objective of this study was to determine the survival of CSFV and variant PRV in 12 animal feeds and ingredients exposed to environmental conditions simulating a 37-day transpacific shipment. Virus was detected by PCR, virus isolation and nursery pig bioassay. CSFV and PRV nucleic acids were stable throughout the 37-day period in all feed matrices. Infectious CSFV was detected in two ingredients (conventional soybean meal and pork sausage casings) at 37 days post-contamination, whereas infectious PRV was detected in nine ingredients (conventional and organic soybean meal, lysine, choline, vitamin D, moist cat and dog food, dry dog food and pork sausage casings). This study demonstrates the relative stability of CSFV and PRV in different feed ingredients under shipment conditions and provides evidence that feed ingredients may represent important risk factors for the transboundary spread of these viruses.


Assuntos
Ração Animal/virologia , Vírus da Febre Suína Clássica/isolamento & purificação , Peste Suína Clássica/virologia , Herpesvirus Suídeo 1/isolamento & purificação , Pseudorraiva/virologia , Doenças dos Suínos/virologia , Meios de Transporte , Animais , China , Vírus da Febre Suína Clássica/patogenicidade , Vírus da Febre Suína Clássica/fisiologia , DNA Viral/genética , Contaminação de Alimentos , Genes Virais/genética , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Modelos Teóricos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Medição de Risco , Fatores de Risco , Suínos
19.
J Anim Sci ; 98(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758795

RESUMO

An experiment was conducted to evaluate the effect of dietary medium-chain fatty acid (MCFA) addition on nursery pig growth performance, fecal microbial composition, and mitigation of porcine epidemic diarrhea virus (PEDV) following storage. A total of 360 pigs (DNA 400 × 200, Columbus, NE; initially 6.7 ± 0.07 kg) were randomized to pens (5 pigs per pen) on the day of weaning (approximately 20 d of age), allowed a 6-d acclimation, blocked by BW, and randomized to dietary treatment (9 pens per treatment). All MCFA (Sigma-Aldrich, St. Louis, MO) were guaranteed ≥98% purity, including hexanoic (C6:0), octanoic (C8:0), and decanoic (C10:0) acids. Treatment diets were formulated in 2 phases (7 to 11 and 11 to 23 kg BW) and formulated to meet or exceed NRC requirement estimates. Treatments (n = 8) were a dose response including 0%, 0.25%, 0.5%, 1.0%, and 1.5% added MCFA blend (1:1:1 ratio C6:0, C8:0, and C10:0), as well as treatments with individual additions of 0.5% C6:0, C8:0, or C10:0. Fecal samples were collected from pigs fed control and 1.5% MCFA blend diets on days 0 and 14 and analyzed using 16s rDNA sequencing. Following feed manufacture, feed was stored in bags at barn temperature and humidity for 40 d before laboratory inoculation with PEDV. Subsamples of retained feed were inoculated with PEDV to achieve a titer of 104 TCID50/g and separate sample bottles were analyzed on 0 and 3 d post-inoculation (dpi). Overall, ADG and ADFI were increased (linear, P ≤ 0.010) and feed efficiency (G:F) improved (linear, P = 0.004) with increasing MCFA blend. Pigs fed 0.5% C8:0 had greater (P = 0.038) ADG compared with pigs fed the control diet, and G:F was improved (P ≤ 0.024) when pigs were fed 0.5% C6:0, 0.5% C8:0, or 0.5% C10:0 compared with control. An inclusion level × day interaction was observed (quadratic, P = 0.023), where PEDV Ct values increased (quadratic, P = 0.001) on 0 dpi with increasing levels of MCFA blend inclusion and also increased on 3 dpi (linear, P < 0.001). Fecal microbial diversity and composition were similar between control and 1.5% MCFA blend. In summary, the use of MCFA in nursery pig diets improves growth performance, provides residual mitigation activity against PEDV, and does not significantly alter fecal microbial composition.


Assuntos
Ração Animal/análise , Infecções por Coronavirus/veterinária , Ácidos Graxos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Doenças dos Suínos/prevenção & controle , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Dieta/veterinária , Fezes/microbiologia , Feminino , Masculino , Suínos , Doenças dos Suínos/virologia , Desmame
20.
J Anim Breed Genet ; 137(1): 84-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31762123

RESUMO

Our objectives were to evaluate the interaction between host genetics and vaginal microbiota and their relationships with antibody (Ab) response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and farrowing performance in commercial gilts. The farrowing performance traits were number born alive, number weaning (NW), total number born, number born dead, stillborn, mummies and preweaning mortality (PWM). The vaginal microbiota was collected on days 4 (D4) and 52 (D52) after vaccination for PRRSV. Blood samples were collected on D52 for Ab measurement. Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Tenericutes were the most abundant Phyla identified in the vaginal microbiota. Heritability ranged from ~0 to 0.60 (Fusobacterium) on D4 and from ~0 to 0.63 (Terrisporobacter) on D52, with 43 operational taxonomic units (OTUs) presenting moderate to high heritability. One major QTL on chromosome 12 was identified for 5 OTUs (Clostridiales, Acinetobacter, Ruminococcaceae, Campylobacter and Anaerococcus), among other 19 QTL. The microbiability for Ab response to PRRSV vaccination was low for both days (<0.07). For farrowing performance, microbiability varied from <0.001 to 0.15 (NW on D4). For NW and PWM, the microbiability was greater than the heritability estimates. Actinobacillus, Streptococcus, Campylobacter, Anaerococcus, Mollicutes, Peptostreptococcus, Treponema and Fusobacterium showed different abundance between low and high Ab responders. Finally, canonical discriminant analyses revealed that vaginal microbiota was able to classify gilts in high and low Ab responders to PRRSV vaccination with a misclassification rate of <0.02. Although the microbiota explained limited variation in Ab response and farrowing performance traits, there is still potential to explore the use of vaginal microbiota to explain variation in traits such as NW and PWM. In addition, these results revealed that there is a partial control of host genetic over vaginal microbiota, suggesting a possibility for genetic selection on the vaginal microbiota.


Assuntos
Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Microbiota , Sus scrofa/genética , Sus scrofa/imunologia , Vagina/microbiologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Microbiota/imunologia , Fenótipo , Sus scrofa/microbiologia , Sus scrofa/virologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA