Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Transl Med ; 15(716): eadf9556, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792959

RESUMO

Traditional vaccines are difficult to deploy against the diverse antimicrobial-resistant, nosocomial pathogens that cause health care-associated infections. We developed a protein-free vaccine composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan that improved survival and reduced bacterial burden of mice with invasive blood or lung infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-expressing Escherichia coli, and carbapenem-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The vaccine also conferred protection against the fungi Rhizopus delemar and Candida albicans. Efficacy was apparent by 24 hours and lasted for up to 28 days after a single vaccine dose, with a second dose restoring efficacy. The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant health care-associated infections.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Vacinas , Animais , Camundongos , Antibacterianos/farmacologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Anti-Infecciosos/farmacologia , Imunidade Inata , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
2.
J Infect Dis ; 227(9): 1042-1049, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36617220

RESUMO

BACKGROUND: We previously reported developing 2 anticapsular monoclonal antibodies (mAbs) as a novel therapy for Acinetobacter baumannii infections. We sought to determine whether a bispecific mAb (bsAb) could improve avidity and efficacy while maximizing strain coverage in one molecule. METHODS: Humanized mAb 65 was cloned into a single-chain variable fragment and attached to humanized mAb C8, combining their paratopes into a single bsAb (C73). We tested bsAb C73's strain coverage, binding affinity, ex vivo opsonic activity, and in vivo efficacy compared to each mAb alone and combined. RESULTS: The bsAb demonstrated strain coverage, binding affinity, opsonization, and in vivo efficacy superior to either original mAb alone or combined. CONCLUSIONS: A humanized bsAb targeting distinct A. baumannii capsule moieties enabled potent and effective coverage of disparate A. baumannii clinical isolates. The bsAb enhances feasibility of development by minimizing the number of components of a promising novel therapeutic for these difficult-to-treat infections.


Assuntos
Acinetobacter baumannii , Anticorpos Biespecíficos , Anticorpos de Cadeia Única , Anticorpos Monoclonais/uso terapêutico , Anticorpos Biespecíficos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-35899218

RESUMO

Objective: To establish an antimicrobial stewardship program in the outpatient setting. Design: Prescribers of antimicrobials were asked to complete a survey regarding antimicrobial stewardship. We also monitored their compliance with appropriate prescribing practices, which were shared in monthly quality improvement reports. Setting: The study was performed at Loyola University Health System, an academic teaching healthcare system in a metropolitan suburban environment. Participants: Prescribers of antimicrobials across 19 primary care and 3 immediate- and urgent-care clinics. Methods: The voluntary survey was developed using SurveyMonkeyand was distributed via e-mail. Data were collected anonymously. Rates of compliance with appropriate prescribing practices were abstracted from electronic health records and assessed by 3 metrics: (1) avoidance of antibiotics in adult acute bronchitis and appropriate antibiotic treatment in (2) patients tested for pharyngitis and (3) children with upper respiratory tract infections. Results: Prescribers were highly knowledgeable about what constitutes appropriate prescribing; verified compliance rates were highly concordant with self-reported rates. Nearly all prescribers were concerned about resistance, but fewer than half believed antibiotics were overprescribed in their office. Among respondents, 74% reported intense pressure from patients to prescribe antimicrobials inappropriately. Immediate- and urgent-care prescribers had higher rates of compliance than primary-care prescribers, and the latter group responded well to monthly reports and online educational resources. Conclusions: Intense pressure from patients to prescribe antimicrobials when they are not indicated leads to overprescribing, an effect compounded by the importance of patient satisfaction scores. Compliance reporting improved the number of appropriate antibiotics prescribed in the primary care setting.

4.
Infect Immun ; 89(10): e0016221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310884

RESUMO

Extremely drug-resistant (XDR) Acinetobacter baumannii is a notorious and frequently encountered pathogen demanding novel therapeutic interventions. An initial monoclonal antibody (MAb), C8, raised against A. baumannii capsule, proved a highly effective treatment against a minority of clinical isolates. To overcome this limitation, we broadened coverage by developing a second antibody for use in a combination regimen. We sought to develop an additional anti-A. baumannii MAb through hybridoma technology by immunizing mice with sublethal inocula of virulent, XDR clinical isolates not bound by MAb C8. We identified a new antibacterial MAb, 65, which bound to strains in a pattern distinct from and complementary to that of MAb C8. MAb 65 enhanced macrophage opsonophagocytosis of targeted strains and markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia murine models of A. baumannii infection. MAb 65 was also synergistic with colistin, substantially enhancing protection compared to monotherapy. Treatment with MAb 65 significantly reduced blood bacterial density, ameliorated cytokine production (interleukin-1ß [IL-1ß], IL-6, IL-10, and tumor necrosis factor), and sepsis biomarkers. We describe a novel MAb targeting A. baumannii that broadens immunotherapeutic strain coverage, is highly potent and effective, and synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/imunologia , Anticorpos Antibacterianos/imunologia , Biomarcadores/sangue , Colistina/imunologia , Citocinas/sangue , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia
5.
J Infect Dis ; 224(12): 2133-2147, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34036366

RESUMO

Monoclonal antibodies (mAbs) are gaining significant momentum as novel therapeutics for infections caused by antibiotic-resistant bacteria. We evaluated the mechanism by which antibacterial mAb therapy protects against Acinetobacter baumannii infections. Anticapsular mAb enhanced macrophage opsonophagocytosis and rescued mice from lethal infections by harnessing complement, macrophages, and neutrophils; however, the degree of bacterial burden did not correlate with survival. Furthermore, mAb therapy reduced proinflammatory (interleukin-1ß [IL-1ß], IL-6, tumor necrosis factor-α [TNF-α]) and anti-inflammatory (IL-10) cytokines, which correlated inversely with survival. Although disrupting IL-10 abrogated the survival advantage conferred by the mAb, IL-10-knockout mice treated with mAb could still survive if TNF-α production was suppressed directly (via anti-TNF-α neutralizing antibody) or indirectly (via macrophage depletion). Thus, even for a mAb that enhances microbial clearance via opsonophagocytosis, clinical efficacy required modulation of pro- and anti-inflammatory cytokines. These findings may inform future mAb development targeting bacteria that trigger the sepsis cascade.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Imunomodulação , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos , Citocinas/sangue , Citocinas/imunologia , Interleucina-10 , Camundongos , Opsonização , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
6.
PLoS Pathog ; 17(2): e1009291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529209

RESUMO

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Cápsulas Bacterianas/fisiologia , Fagócitos/virologia , Fagocitose , Polissacarídeos Bacterianos/química , Virulência , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Células RAW 264.7
9.
PLoS One ; 14(7): e0219824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318907

RESUMO

In 2017, the WHO identified Acinetobacter baumannii as the top priority for the development of new antibiotics. Despite the need for new antibiotics, there remains a lack of well validated preclinical tools for A. baumannii. Here, we characterize and validate a mouse model for A. baumannii translational research. Antibiotic sensitivity for meropenem, amikacin, and polymyxin b was determined by the broth microdilution MIC assay. LD100 inoculums, in both blood and lung infection models, were determined in male and female C3HeB/FeJ mice that were challenged with various A. baumannii clinical isolates. Blood (blood infection model) or blood and lung tissue (lung infection model) were collected from infected mice at 2 and 18 hours and the bacterial burden was determined by quantitative culture. Blood chemistry was analyzed using the iStat system. Cytokines (IL-1ß, TNF, IL-6, and IL-10) were measured in the blood and lung homogenate by ELISA assay. Lung sections (H&E stains) were scored by a pathologist. In the blood infection model, the cytokines and physiological data indicate that mice become moribund due to sepsis (low blood pH, falling bicarbonate, and a rising base deficit), whereas mice become moribund due to respiratory failure (low blood pH, rising bicarbonate, and a falling base deficit) in the oral aspiration pneumonia model. We also characterized the timing of changes in various clinical and biomarker endpoints, which can serve as a basis for future interventional studies. Susceptibility was generally similar across gender and infection route. However, we did observe that female mice were approximately 2-fold more sensitive to LAC-4 ColR in the blood infection model. We also observed that female mice were more than 10-fold more resistant to VA-AB41 in the oral aspiration pneumonia model. These results establish parameters to follow in order to assess efficacy of novel preventative and therapeutic approaches for these infections.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Biomarcadores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Testes de Sensibilidade Microbiana
10.
J Antimicrob Chemother ; 74(9): 2631-2639, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170282

RESUMO

BACKGROUND: New strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens-including Gram-negative bacteria-to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin. OBJECTIVES: To define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics. METHODS: The efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time-kill assay and assays for the selection of resistant mutants. RESULTS: We confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time-kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species. CONCLUSIONS: These results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.


Assuntos
Antibacterianos/uso terapêutico , Apoproteínas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Transferrina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Ciprofloxacina/uso terapêutico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação
12.
PLoS One ; 14(6): e0217439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31181086

RESUMO

Staphylococcus aureus infections represent a major public health threat, but previous attempts at developing a universal vaccine have been unsuccessful. We attempted to identify a vaccine that would be protective against both skin/soft tissue and bloodstream infections. We first tested a panel of staphylococcal antigens that are conserved across strains, combined with aluminum hydroxide as an adjuvant, for their ability to induce protective immunity in both skin and bacteremia infection models. Antigens were identified that reduced dermonecrosis during skin infection, and other non-overlapping antigens were identified that showed trends to protection in the bacteremia model. However, individual antigens were not identified that mediated substantial protection in both the skin and bacteremia infection models. We therefore tested a variety of combinations of proteins to seek a single combination that could mediate protection in both models. After iterative testing, a vaccine consisting of 3 antigens, ABC transporter protein (SACOL2451), ABC2 transporter protein (SACOL0695), and α-hemolysin (SACOL1173), was identified as the most effective combination. This combination vaccine provided protection in a skin infection model. However, these antigens were only partially protective in the bacteremia infection model. Even by testing multiple different adjuvants, optimized efficacy in the skin infection model did not translate into efficacy in the bacteremia model. Thus protective vaccines against skin/soft tissue infections may not enable effective protection against bloodstream infections.


Assuntos
Bacteriemia/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Bacteriemia/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pele/imunologia , Pele/microbiologia
13.
Nat Immunol ; 20(5): 664, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30846880

RESUMO

In the version of this article initially published, the label (CASP4-C285A-HA) above the second and fifth lanes in the right blot in Fig. 1e is incorrect; the correct label is CASP4-C258A-HA. Also, the two labels at right above the plot in Fig. 6c were switched; the far right label should be 'Co-housed Serpinb1a-/-' (in red font) and the label just to its left (above the fourth column) should be 'Co-housed WT' (in black font). Finally, the bottom two symbols in the key to Fig. 7d were switched; the red circle should identify 1CARD-SUMO (TEV) and the blue triangle should identify 1CARD-SUMO + SERPINB1 (TEV). The errors have been corrected in the HTML and PDF versions of the article.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30782989

RESUMO

There has been renewed interest in combining traditional small-molecule antimicrobial agents with nontraditional therapies to potentiate antimicrobial effects. Apotransferrin, which decreases iron availability to microbes, is one such approach. We conducted a 48-h one-compartment in vitro infection model to explore the impact of apotransferrin on the bactericidal activity of ciprofloxacin. The challenge panel included four Klebsiella pneumoniae isolates with ciprofloxacin MIC values ranging from 0.08 to 32 mg/liter. Each challenge isolate was subjected to an ineffective ciprofloxacin monotherapy exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC ratio] ranging from 0.19 to 96.6) with and without apotransferrin. As expected, the no-treatment and apotransferrin control arms showed unaltered prototypical logarithmic bacterial growth. We identified relationships between exposure and change in bacterial density for ciprofloxacin alone (R2 = 0.64) and ciprofloxacin in combination with apotransferrin (R2 = 0.84). Addition of apotransferrin to ciprofloxacin enabled a remarkable reduction in bacterial density across a wide range of ciprofloxacin exposures. For instance, at a ciprofloxacin AUC/MIC ratio of 20, ciprofloxacin monotherapy resulted in nearly 2 log10 CFU increase in bacterial density, while the combination of apotransferrin and ciprofloxacin resulted in 2 log10 CFU reduction in bacterial density. Furthermore, addition of apotransferrin significantly reduced the emergence of ciprofloxacin-resistant subpopulations compared to monotherapy. These data demonstrate that decreasing the rate of bacterial replication with apotransferrin in combination with antimicrobial therapy represents an opportunity to increase the magnitude of the bactericidal effect and to suppress the growth rate of drug-resistant subpopulations.


Assuntos
Antibacterianos/farmacologia , Apoproteínas/farmacologia , Ciprofloxacina/farmacologia , Transferrina/farmacologia , Fluoroquinolonas/farmacologia , Klebsiella/efeitos dos fármacos , Testes de Sensibilidade Microbiana
15.
Nat Immunol ; 20(3): 276-287, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692621

RESUMO

Inflammatory caspases (caspase-1, caspase-4, caspase-5 and caspase-11 (caspase-1/-4/-5/-11)) mediate host defense against microbial infections, processing pro-inflammatory cytokines and triggering pyroptosis. However, precise checkpoints are required to prevent their unsolicited activation. Here we report that serpin family B member 1 (SERPINB1) limited the activity of those caspases by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation. While the reactive center loop of SERPINB1 inhibits neutrophil serine proteases, its carboxy-terminal CARD-binding motif restrained the activation of pro-caspase-1/-4/-5/-11. Consequently, knockdown or deletion of SERPINB1 prompted spontaneous activation of caspase-1/-4/-5/-11, release of the cytokine IL-1ß and pyroptosis, inducing elevated inflammation after non-hygienic co-housing with pet-store mice and enhanced sensitivity to lipopolysaccharide- or Acinetobacter baumannii-induced endotoxemia. Our results reveal that SERPINB1 acts as a vital gatekeeper of inflammation by restraining neutrophil serine proteases and inflammatory caspases in a genetically and functionally separable manner.


Assuntos
Caspases/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Serpinas/imunologia , Animais , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Células RAW 264.7 , Interferência de RNA , Serina Proteases/imunologia , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Células THP-1 , Células U937
16.
J Vis Exp ; (136)2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30010650

RESUMO

Murine infection models are critical for understanding disease pathogenesis and testing the efficacy of novel therapeutics designed to combat causative pathogens. Infectious pneumonia is among the most common infections presented by patients in the clinic and thus warrants an appropriate in vivo model. Typical pneumonia models use intranasal inoculation, which deposits excessive organisms outside the lung, causing off-target complications and symptoms, such as sinusitis, gastritis, enteritis, physical trauma, or microparticle misting to mimic aerosol spread more typical of viral, tuberculous, or fungal pneumonia. These models do not accurately reflect the pathogenesis of typical community- or healthcare-acquired bacterial pneumonia. In contrast, this murine model of oropharyngeal aspiration pneumonia mimics the droplet route in healthcare-acquired pneumonia. Inoculating 50 µL of the bacteria suspension into the oropharynx of anesthetized mice causes reflexive aspiration, which results in pneumonia. With this model, one can examine the pathogenesis of pneumonia-causing pathogens and new treatments to combat these diseases.


Assuntos
Pulmão/patologia , Orofaringe/patologia , Pneumonia Aspirativa/microbiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Pneumonia Aspirativa/patologia , Pneumonia Bacteriana/patologia , Pneumonia Associada à Ventilação Mecânica/patologia
17.
J Infect Dis ; 216(4): 489-501, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931235

RESUMO

Background: Extremely drug-resistant (XDR) Acinetobacter baumannii is one of the most commonly encountered, highly resistant pathogens requiring novel therapeutic interventions. Methods: We developed C8, a monoclonal antibody (mAb), by immunizing mice with sublethal inocula of a hypervirulent XDR clinical isolate. Results: C8 targets capsular carbohydrate on the bacterial surface, enhancing opsonophagocytosis. Treating with a single dose of C8 as low as 0.5 µg/mouse (0.0167 mg/kg) markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia models of XDR A. baumannii infection. C8 was also synergistic with colistin, substantially improving survival compared to monotherapy. Treatment with C8 significantly reduced blood bacterial density, cytokine production (tumor necrosis factor α, interleukin [IL] 6, IL-1ß, and IL-10), and sepsis biomarkers. Serial in vitro passaging of A. baumannii in the presence of C8 did not cause loss of mAb binding to the bacteria, but did result in emergence of less-virulent mutants that were more susceptible to macrophage uptake. Finally, we developed a highly humanized variant of C8 that retains opsonophagocytic activity in murine and human macrophages and rescued mice from lethal infection. Conclusions: We describe a promising and novel mAb as therapy for lethal, XDR A. baumannii infections, and demonstrate that it synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Sepse/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Biomarcadores/sangue , Colistina/farmacologia , Citocinas/sangue , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Células HL-60 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Sepse/microbiologia , Resultado do Tratamento
18.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830942

RESUMO

For more than a century, diabetic patients have been considered immunosuppressed due to defects in phagocytosis and microbial killing. We confirmed that diabetic mice were hypersusceptible to bacteremia caused by Gram-negative bacteria (GNB), dying at inocula nonlethal to nondiabetic mice. Contrary to the pervasive paradigm that diabetes impedes phagocytic function, the bacterial burden was no greater in diabetic mice despite excess mortality. However, diabetic mice did exhibit dramatically increased levels of proinflammatory cytokines in response to GNB infections, and immunosuppressing these cytokines with dexamethasone restored their resistance to infection, both of which are consistent with excess inflammation. Furthermore, disruption of the receptor for advanced glycation end products (RAGE), which is stimulated by heightened levels of AGEs in diabetic hosts, protected diabetic but not nondiabetic mice from GNB infection. Thus, rather than immunosuppression, diabetes drives lethal hyperinflammation in response to GNB by signaling through RAGE. As such, interventions to improve the outcomes from GNB infections should seek to suppress the immune response in diabetic hosts.IMPORTANCE Physicians and scientists have subscribed to the dogma that diabetes predisposes the host to worse outcomes from infections because it suppresses the immune system. This understanding was based largely on ex vivo studies of blood from patients and animals with diabetes. However, we have found that the opposite is true and worse outcomes from infection are caused by overstimulation of the immune system in response to bacteria. This overreaction occurs by simultaneous ligation of two host receptors: TLR4 and RAGE. Both signal via a common downstream messenger, MyD88, triggering hyperinflammation. In summary, contrary to hundred-year-old postulations about immune suppression in diabetic hosts, we find that diabetes instead predisposes to more severe infections because of additional inflammatory output through dual activation of MyD88 by not only TLR4 but also RAGE. It is the activation of RAGE during GNB infections in those with diabetes that accounts for their heightened susceptibility to infection compared to nondiabetic hosts.


Assuntos
Diabetes Mellitus Experimental/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamação/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Carga Bacteriana , Citocinas/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Progressão da Doença , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética
19.
mSphere ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28497114

RESUMO

Acinetobacter baumannii is one of the most antibiotic-resistant pathogens in clinical medicine, and extensively drug-resistant (XDR) strains are commonly isolated from infected patients. Such XDR strains are already resistant to traditional selectable genetic markers, limiting the ability to conduct pathogenesis research by genetic disruption. Optimization of selectable markers is therefore critical for the advancement of fundamental molecular biology techniques to use in these strains. We screened 23 drugs that constitute a broad array of antibiotics spanning multiple drug classes against HUMC1, a highly virulent and XDR A. baumannii clinical blood and lung isolate. HUMC1 is resistant to all clinically useful antibiotics that are reported by the clinical microbiology laboratory, except for colistin. Ethical concerns about intentionally establishing pan-resistance, including to the last-line agent, colistin, in a clinical isolate made identification of other markers desirable. We screened additional antibiotics that are in clinical use and those that are useful only in a lab setting to identify selectable markers that were effective at selecting for transformants in vitro. We show that supraphysiological levels of tetracycline can overcome innate drug resistance displayed by this XDR strain. Last, we demonstrate that transformation of the tetA (tetracycline resistance) and Sh ble (zeocin resistance), but not pac (puromycin resistance), resistance cassettes allow for selection of drug-resistant transformants. These results make the genetic manipulation of XDR A. baumannii strains easily achieved. IMPORTANCE Multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) strains of Acinetobacter baumannii have frequently been characterized. The ability of A. baumannii to develop resistance to antibiotics is a key reason this organism has been difficult to study using genetic and molecular biology approaches. Here we report selectable markers that are not only useful but necessary for the selection of drug-resistant transformants in the setting of drug-resistant backgrounds. Use of these selectable markers can be applied to a variety of genetic and molecular techniques such as mutagenesis and transformation. These selectable markers will help promote genetic and molecular biology studies of otherwise onerous drug-resistant strains, while avoiding the generation of pathogenic organisms that are resistant to clinically relevant antibiotics.

20.
Hum Vaccin Immunother ; 13(7): 1609-1614, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28422567

RESUMO

Staphylococcus aureus is the leading cause of nosocomial and community-acquired infections, including soft tissue and skin infections and bacteremia. However, efforts to develop an effective vaccine against S. aureus infections have not been successful. We evaluated serotypes 5 and 8 capsule polysaccharides (CP) CRM197 conjugates as vaccine candidates in murine models of bacteremia, lethal sepsis, and skin infection. The conjugate vaccines elicited a good antibody response, and active immunization of CP5-CRM or CP8-CRM conjugates protected against staphylococcal bacteremia. In the skin infection model, CP8-CRM but not CP5-CRM protected against dermonecrosis, and CP8-CRM immunization significantly decreased the bacterial burden in the lesion. However, neither CP5-CRM nor CP8-CRM protected against mortality in the lethal sepsis model. The results indicate the capsular vaccines elicit protection against some, but not all, aspects of staphylococcal infection.


Assuntos
Polissacarídeos Bacterianos/imunologia , Sorogrupo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Bacteriemia/microbiologia , Bacteriemia/prevenção & controle , Carga Bacteriana , Proteínas de Bactérias/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos BALB C , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Análise de Sobrevida , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA