Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Med Chem ; 230: 114113, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065412

RESUMO

Following the concept of conformational restriction to obtain high affinity σ1 ligands, the piperidine ring of eliprodil was replaced by the bicyclic tropane system and an exocyclic double bond was introduced. The envisaged benzylidenetropanes 9 were prepared by conversion of tropanone 10 into the racemic mixture of (Z)-14 and (E)-14. Reaction of racemate (Z)-14/(E)-14 with enantiomerically pure (R)- or (S)-configured 2-phenyloxirane provided mixtures of diastereomeric ß-aminoalcohols (R,Z)-9 and (R,E)-9 as well as (S,Z)-9 and (S,E)-9, which were separated by chiral HPLC, respectively. X-ray crystal structure analysis of (S,Z)-9 allowed the unequivocal assignment of the configuration of all four stereoisomers. In receptor binding studies with radioligands, (R,E)-9 and (S,Z)-9 showed subnanomolar σ1 affinity with eudismic ratios of 8.3 and 40. In both compounds the 4-fluorophenyl moiety is oriented towards (S)-configured C-5 of the tropane system. Both compounds display high selectivity for the σ1 receptor over the σ2 subtype but moderate selectivity over GluN2B NMDA receptors. In vivo, (R,E)-9 (Ki(σ1) = 0.80 nM) showed high antiallodynic activity in the capsaicin assay. The effect of (R,E)-9 could be reversed by pre-administration of the σ1 agonist PRE-084 confirming the σ1 antagonistic activity of (R,E)-9.


Assuntos
Receptores sigma , Ligantes , Ligação Proteica , Receptores sigma/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tropanos/farmacologia
2.
Eur J Med Chem ; 219: 113443, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33901806

RESUMO

1,3-Dioxanes 1 and cyclohexanes 2 bearing a phenyl ring and an aminoethyl moiety in 1,3-relationship to each other represent highly potent σ1 receptor antagonists. In order to increase the chemical stability of the acetalic 1,3-dioxanes 1 and the polarity of the cyclohexanes 2, tetrahydropyran derivatives 3 equipped with the same substituents were designed, synthesized and pharmacologically evaluated. The key step of the synthesis was a lipase-catalyzed enantioselective acetylation of the alcohol (R)-5 leading finally to enantiomerically pure test compounds 3a-g. With respect to σ1 receptor affinity and selectivity over a broad range of related (σ2, PCP binding site) and further targets, the enantiomeric benzylamines 3a and cyclohexylmethylamines 3b represent the most promising drug candidates of this series. However, the eudismic ratio for σ1 binding is only in the range of 2.5-3.3. Classical molecular dynamics (MD) simulations confirmed the same binding pose for both the tetrahydropyran 3 and cyclohexane derivatives 2 at the σ1 receptor, according to which: i) the protonated amino moiety of (2S,6R)-3a engages the same key polar interactions with Glu172 (ionic) and Phe107 (π-cation), ii) the lipophilic parts of (2S,6R)-3a are hosted in three hydrophobic regions of the σ1 receptor, and iii) the O-atom of the tetrahydropyran derivatives 3 does not show a relevant interaction with the σ1 receptor. Further in silico evidences obtained by the application of free energy perturbation and steered MD techniques fully supported the experimentally observed difference in receptor/ligand affinities. Tetrahydropyrans 3 require a lower dissociative force peak than cyclohexane analogs 2. Enantiomeric benzylamines 3a and cyclohexylmethylamines 3b were able to inhibit the growth of the androgen negative human prostate cancer cell line DU145. The cyclohexylmethylamine (2S,6R)-3b showed the highest σ1 affinity (Ki(σ1) = 0.95 nM) and the highest analgesic activity in vivo (67%).


Assuntos
Analgésicos/síntese química , Antineoplásicos/síntese química , Piranos/química , Receptores sigma/metabolismo , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Piranos/metabolismo , Receptores sigma/química , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica , Receptor Sigma-1
4.
Front Pharmacol ; 10: 613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263413

RESUMO

Sigma-1 (σ1) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ1 receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ1 antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ1 inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wild-type (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ1 receptor knockout (ခσ1-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI. The systemic acute administration of the selective σ1 receptor antagonist S1RA attenuated all three types of SNI-induced hypersensitivity in WT mice. These ameliorative effects of S1RA were reversed by the administration of the σ1 agonist PRE-084, and were absent in σ1-KO mice, indicating the selectivity of S1RA-induced effects. The opioid antagonist naloxone and its peripherally restricted analog naloxone methiodide prevented S1RA-induced effects in mechanical and heat hypersensitivity, but not in cold allodynia, indicating that opioid-dependent and -independent mechanisms are involved in the effects of this σ1 antagonist. The repeated administration of S1RA twice a day during 10 days reduced SNI-induced cold, mechanical, and heat hypersensitivity without inducing analgesic tolerance during treatment. These effects were observed up to 12 h after the last administration, when S1RA was undetectable in plasma or brain, indicating long-lasting pharmacodynamic effects. These data suggest that σ1 antagonism may have therapeutic value for the treatment of neuropathic pain induced by the transection of peripheral nerves.

5.
J Med Chem ; 61(21): 9666-9690, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30350997

RESUMO

In order to detect novel σ receptor ligands, the rigid spiro[[2]benzopyran-1,1'-cyclohexan]-4'-one was connected with amino moieties derived from σ2 receptor preferring lead compounds resulting in mixtures of trans- and cis-configured amines 6, 18, and 27. In a four step synthesis the methyl acetals 6 were converted into fluoroethyl derivatives 13 and 30. The most promising σ2 receptor ligand is the methyl acetal 6a bearing a 2,4-dimethylbenzylamino moiety. The fluoroethyl derivatives 13c and 13d reveal high σ1 affinity but moderate selectivity over the σ2 subtype. In mice 13c and 13d showed antiallodynic activity that is stronger than that of the reference σ1 antagonist BD-1063 (34). Since the antiallodynic activity of 13c could only be partially reversed by the σ1 agonist PRE-084 (35), it is postulated that a second mechanism contributes to its overall antiallodynic effect. In contrast, the antiallodynic effect of its diastereomer 13d can be totally explained by a σ1 antagonism.


Assuntos
Hiperalgesia/tratamento farmacológico , Receptores sigma/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Animais , Técnicas de Química Sintética , Feminino , Ligantes , Camundongos , Ligação Proteica , Receptores sigma/química , Compostos de Espiro/metabolismo , Compostos de Espiro/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade
6.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635651

RESUMO

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Assuntos
Medição da Dor/efeitos dos fármacos , Tetrodotoxina/farmacologia , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cistite/tratamento farmacológico , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Mostardeira , Nociceptores/metabolismo , Óleos de Plantas/farmacologia , Canais de Sódio/metabolismo , Dor Visceral/metabolismo
7.
J Pharmacol Exp Ther ; 348(1): 32-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155346

RESUMO

We evaluated the effects of σ1-receptor inhibition on µ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several µ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral µ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated µ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach. The µ-opioid antinociception potentiated by σ1 inhibition (by σ1-receptor knockout or σ1-pharmacological antagonism) was more sensitive to the peripherally restricted opioid antagonist naloxone methiodide than opioid antinociception under normal conditions, indicating a key role for peripheral opioid receptors in the enhanced antinociception. Direct interaction between the opioid drugs and σ1 receptor cannot account for our results, since the former lacked affinity for σ1 receptors (labeled with [(3)H](+)-pentazocine). A peripheral role for σ1 receptors was also supported by their higher density (Western blot results) in peripheral nervous tissue (dorsal root ganglia) than in several central areas involved in opioid antinociception (dorsal spinal cord, basolateral amygdala, periaqueductal gray, and rostroventral medulla). In contrast to its effects on nociception, σ1-receptor inhibition did not alter fentanyl- or loperamide-induced constipation, a peripherally mediated nonanalgesic opioid effect. Therefore, σ1-receptor inhibition may be used as a systemic or local adjuvant to enhance peripheral µ-opioid analgesia without affecting opioid-induced constipation.


Assuntos
Analgésicos Opioides/farmacologia , Medição da Dor/métodos , Receptores Opioides mu/fisiologia , Receptores sigma/fisiologia , Analgésicos Opioides/antagonistas & inibidores , Animais , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/genética , Constipação Intestinal/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Camundongos , Camundongos Knockout , Receptores Opioides mu/metabolismo , Receptores sigma/deficiência , Receptores sigma/genética , Receptor Sigma-1
8.
Neuropharmacology ; 70: 348-58, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23524304

RESUMO

We studied the modulation of morphine-induced mechanical antinociception and side effects by σ1 receptor inhibition. Both wild-type (WT) and σ1 receptor knockout (σ1-KO) mice showed similar responses to paw pressure (100-600 g). The systemic (subcutaneous) or local (intraplantar) administration of σ1 antagonists (BD-1063, BD-1047, NE-100 and S1RA) was devoid of antinociceptive effects in WT mice. However, σ1-KO mice exhibited an enhanced mechanical antinociception in response to systemic morphine (1-16 mg/kg). Similarly, systemic treatment of WT mice with σ1 antagonists markedly potentiated morphine-induced antinociception, and its effects were reversed by the selective σ1 agonist PRE-084. Although the local administration of morphine (50-200 µg) was devoid of antinociceptive effects in WT mice, it induced dose-dependent antinociception in σ1-KO mice. This effect was limited to the injected paw. Enhancement of peripheral morphine antinociception was replicated in WT mice locally co-administered with σ1 antagonists and the opioid. None of the σ1 antagonists tested enhanced morphine-antinociception in σ1-KO mice, confirming a σ1-mediated action. Morphine-induced side-effects (hyperlocomotion and inhibition of gastrointestinal transit) were unaltered in σ1-KO mice. These results cannot be explained by a direct interaction of σ1 ligands with µ-opioid receptors or adaptive changes of µ-receptors in σ1-KO mice, given that [(3)H]DAMGO binding in forebrain, spinal cord, and hind-paw skin membranes was unaltered in mutant mice, and none of the σ1 drugs tested bound to µ-opioid receptors. These results show that σ1 receptor inhibition potentiates morphine-induced mechanical analgesia but not its acute side effects, and that this enhanced analgesia can be induced at peripheral level.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Receptores sigma/antagonistas & inibidores , Analgésicos Opioides/uso terapêutico , Animais , Sinergismo Farmacológico , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Motilidade Gastrointestinal/efeitos dos fármacos , Membro Posterior/metabolismo , Hiperalgesia/tratamento farmacológico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Prosencéfalo/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Medula Espinal/metabolismo , Trítio , Receptor Sigma-1
9.
J Pain ; 13(11): 1107-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23063344

RESUMO

UNLABELLED: Sigma-1 (σ(1)) receptors play a role in different types of pain and in central sensitization mechanisms; however, it is unknown whether they are involved in chemotherapy-induced neuropathic pain. We compared the ability of paclitaxel to induce cold (acetone test) and mechanical (electronic Von Frey test) allodynia in wild-type (WT) and σ(1) receptor knockout (σ(1)-KO) mice. We also tested the effect on paclitaxel-induced painful neuropathy of BD-1063 (16-64 mg/kg, subcutaneously) and S1RA (32-128 mg/kg, subcutaneously), 2 selective σ(1) receptor antagonists that bind to the σ(1) receptor with high affinity and competitively. The responses to cold and mechanical stimuli were similar in WT and σ(1)-KO mice not treated with paclitaxel; however, treatment with paclitaxel (2 mg/kg, intraperitoneally, once per day during 5 consecutive days) produced cold and mechanical allodynia and an increase in spinal cord diphosphorylated extracellular signal-regulated kinase (pERK) in WT but not in σ(1)-KO mice. The administration of BD-1063 or S1RA 30 minutes before each paclitaxel dose prevented the development of cold and mechanical allodynia in WT mice. Moreover, the acute administration of both σ(1) receptor antagonists dose dependently reversed both types of paclitaxel-induced allodynia after they had fully developed. These results suggest that σ(1) receptors play a key role in paclitaxel-induced painful neuropathy. PERSPECTIVE: Antagonists of the σ(1) receptor may have therapeutic value for the treatment and/or prevention of paclitaxel-induced neuropathic pain. This possibility is especially interesting in the context of chemotherapy-induced neuropathy, where the onset of nerve damage is predictable and preventive treatment could be administered.


Assuntos
Antineoplásicos Fitogênicos , Neuralgia/induzido quimicamente , Paclitaxel , Receptores sigma/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Encéfalo/metabolismo , Temperatura Baixa , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Membranas/efeitos dos fármacos , Membranas/metabolismo , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Entorpecentes/metabolismo , Medição da Dor/efeitos dos fármacos , Pentazocina/metabolismo , Estimulação Física , Piperazinas/farmacologia , Equilíbrio Postural/efeitos dos fármacos , Pirazóis/farmacologia , Receptores sigma/agonistas , Receptores sigma/genética , Receptor Sigma-1
10.
Mar Drugs ; 10(2): 281-305, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22412801

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs). VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured) nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Neurotoxinas/uso terapêutico , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismo , Tetrodotoxina/uso terapêutico , Dor Aguda/tratamento farmacológico , Dor Aguda/imunologia , Dor Aguda/metabolismo , Animais , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/imunologia , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canais de Sódio/química , Canais de Sódio/genética
11.
Pain ; 143(3): 252-261, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19375855

RESUMO

We evaluated the role of sigma(1) receptors on capsaicin-induced mechanical hypersensitivity and on nociceptive pain induced by punctate mechanical stimuli, using wild-type and sigma(1) receptor knockout (sigma(1)-KO) mice and selective sigma(1) receptor-acting drugs. Mutation in sigma(1)-KO mice was confirmed by PCR analysis of genomic DNA and, at the protein level, by [(3)H](+)-pentazocine binding assays. Both wild-type and sigma(1)-KO mice not treated with capsaicin showed similar responses to different intensities of mechanical stimuli (0.05-8 g force), ranging from innocuous to noxious, applied to the hind paw. This indicates that sigma(1) gene inactivation does not modify the perception of punctate mechanical stimuli. The intraplantar (i.pl.) administration of capsaicin induced dose-dependent mechanical allodynia in wild-type mice (markedly reducing both the threshold force necessary to induce paw withdrawal and the latency to paw withdrawal induced by a given force). In contrast, capsaicin was completely unable to induce mechanical hypersensitivity in sigma(1)-KO mice. The high-affinity and selective sigma(1) antagonists BD-1063, BD-1047 and NE-100, administered subcutaneously (s.c.), dose-dependently inhibited mechanical allodynia induced by capsaicin (1 microg,i.pl.), yielding ED(50) (mg/kg) values of 15.80+/-0.93, 29.31+/-1.65 and 40.74+/-7.20, respectively. The effects of the sigma(1) antagonists were reversed by the sigma(1) agonist PRE-084 (32 mg/kg, s.c.). None of the drugs tested modified the responses induced by a painful mechanical punctate stimulus (4 g force) in nonsensitized animals. These results suggest that sigma(1) receptors are essential for capsaicin-induced mechanical hypersensitivity, but are not involved in mechanical nociceptive pain.


Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Nociceptores/metabolismo , Limiar da Dor/fisiologia , Receptores sigma/genética , Medula Espinal/metabolismo , Animais , Anisóis/farmacologia , Capsaicina/farmacologia , DNA/análise , Etilenodiaminas/farmacologia , Feminino , Hiperalgesia/induzido quimicamente , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Nociceptores/efeitos dos fármacos , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Piperazinas/farmacologia , Reação em Cadeia da Polimerase , Propilaminas/farmacologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Medula Espinal/efeitos dos fármacos , Receptor Sigma-1
12.
Pain ; 137(3): 520-531, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18037242

RESUMO

We evaluated the effect of low doses of systemically administered tetrodotoxin (TTX) on the development and expression of neuropathic pain induced by paclitaxel in mice. Treatment with paclitaxel (2mg/kg, i.p., once daily during 5 days) produced long-lasting (2-4 weeks) heat hyperalgesia (plantar test), mechanical allodynia (electronic Von Frey test) and cold allodynia (acetone drop method), with maximum effects observed on days 7, 10 and 10-14, respectively. Acute subcutaneous treatment with 1 or 3 microg/kg of TTX reduced the expression of mechanical allodynia, whereas higher doses (3 or 6 microg/kg) were required to reduce the expression of cold allodynia and heat hyperalgesia. In contrast, TTX (3 or 6 microg/kg, s.c.) did not affect the response to the same thermal and mechanical stimuli in control animals, which indicates that the antihyperalgesic and antiallodynic effects of TTX were not due to unspecific inhibition of the perception of these stimuli. Administration of TTX (6 microg/kg, s.c.) 30 min before each of the 5 doses of paclitaxel did not modify the development of heat hyperalgesia produced by the antineoplastic, but abolished the development of mechanical and cold allodynia. Coadministration of a lower dose of TTX (3 microg/kg) also prevented the development of mechanical allodynia. No signs of TTX-induced toxicity or motor incoordination were observed. These data suggest that low doses of TTX can be useful to prevent and treat paclitaxel-induced neuropathic pain, and that TTX-sensitive subtypes of sodium channels play a role in the pathogenesis of chemotherapy-induced neuropathic pain.


Assuntos
Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Neuralgia/induzido quimicamente , Neuralgia/prevenção & controle , Paclitaxel/efeitos adversos , Medição da Dor/efeitos dos fármacos , Tetrodotoxina/administração & dosagem , Anestésicos Locais/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA