Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736120

RESUMO

The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.

2.
J Fungi (Basel) ; 8(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205874

RESUMO

Dutch elm disease (DED), caused by Ophiostoma novo-ulmi (Onu), is a destructive disease of American elm (Ulmus americana L.). The molecular mechanisms of resistance and susceptibility against DED in American elm are still largely uncharacterized. In the present study, we performed a de novo transcriptome (RNA-sequencing; RNA-Seq) assembly of U. americana and compared the gene expression in a resistant genotype, 'Valley Forge', and a susceptible (S) elm genotype at 0 and 96 h post-inoculation of Onu. A total of 85,863 non-redundant unigenes were identified. Compared to the previously characterized U. minor transcriptome, U. americana has 35,290 similar and 55,499 unique genes. The transcriptomic variations between 'Valley Forge' and 'S' were found primarily in the photosynthesis and primary metabolism, which were highly upregulated in the susceptible genotype irrespective of the Onu inoculation. The resistance to DED was associated with the activation of RPM1-mediated effector-triggered immunity that was demonstrated by the upregulation of genes involved in the phenylpropanoids biosynthesis and PR genes. The most significantly enriched gene ontology (GO) terms in response to Onu were response to stimulus (GO:0006950), response to stress (GO:0050896), and secondary metabolic process (GO:0008152) in both genotypes. However, only in the resistant genotype, the defense response (GO:0006952) was among the topmost significantly enriched GO terms. Our findings revealed the molecular regulations of DED resistance and susceptibility and provide a platform for marker-assisted breeding of resistant American elm genotypes.

3.
J Exp Bot ; 72(22): 7942-7956, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427647

RESUMO

In legumes interacting with rhizobia, the formation of symbiotic organs involved in the acquisition of atmospheric nitrogen gas (N2) is dependent on the plant nitrogen (N) demand. We used Medicago truncatula plants cultivated in split-root systems to discriminate between responses to local and systemic N signaling. We evidenced a strong control of nodule formation by systemic N signaling but obtained no clear evidence of a local control by mineral nitrogen. Systemic signaling of the plant N demand controls numerous transcripts involved in root transcriptome reprogramming associated with early rhizobia interaction and nodule formation. SUPER NUMERIC NODULES (SUNN) has an important role in this control, but we found that major systemic N signaling responses remained active in the sunn mutant. Genes involved in the activation of nitrogen fixation are regulated by systemic N signaling in the mutant, explaining why its hypernodulation phenotype is not associated with higher nitrogen fixation of the whole plant. We show that the control of transcriptome reprogramming of nodule formation by systemic N signaling requires other pathway(s) that parallel the SUNN/CLE (CLAVATA3/EMBRYO SURROUNDING REGION-LIKE PEPTIDES) pathway.


Assuntos
Medicago truncatula , Rhizobium , Homeostase , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrogênio , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
4.
Evol Appl ; 12(8): 1583-1594, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31462916

RESUMO

During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.

5.
Can J Microbiol ; 62(6): 525-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27068623

RESUMO

Dutch elm disease (DED) is caused by the dimorphic fungi Ophiostoma ulmi, Ophiostoma novo-ulmi, and Ophiostoma himal-ulmi. A cell population density-dependent phenomenon related to quorum sensing was previously shown to affect the reversible transition from yeast-like to mycelial growth in liquid shake cultures of O. novo-ulmi NRRL 6404. Since the response to external stimuli often varies among DED fungal strains, we evaluated the effect of inoculum size on 8 strains of the 3 species of DED agents by determining the proportion of yeast and mycelium produced at different spore inoculum concentrations in defined liquid shake medium. The results show that not all DED fungi strains respond similarly to inoculum size effect, since variations were observed among strains. It is thus possible that the different strains belonging to phylogenetically close species use different signalling molecules or molecular signalling pathways to regulate their growth mode via quorum-sensing mechanisms.


Assuntos
Ophiostoma/fisiologia , Doenças das Plantas/microbiologia , Percepção de Quorum , Ulmus/microbiologia , Contagem de Colônia Microbiana , Micélio , Ophiostoma/crescimento & desenvolvimento , Esporos Fúngicos
6.
G3 (Bethesda) ; 5(11): 2487-95, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384770

RESUMO

Fungal dimorphism is a complex trait and our understanding of the ability of fungi to display different growth morphologies is limited to a small number of model species. Here we study a highly aggressive dimorphic fungus, the ascomycete Ophiostoma novo-ulmi, which is a model in plant pathology and the causal agent of Dutch elm disease. The two growth phases that this fungus displays, i.e., a yeast phase and mycelial phase, are thought to be involved in key steps of disease development. We used RNAseq to investigate the genome-wide gene expression profiles that are associated with yeast and mycelial growth phases in vitro. Our results show a clear molecular distinction between yeast and mycelial phase gene expression profiles. Almost 12% of the gene content is differentially expressed between the two phases, which reveals specific functions related to each growth phase. We compared O. novo-ulmi transcriptome profiles with those of two model dimorphic fungi, Candida albicans and Histoplasma capsulatum. Few orthologs showed similar expression regulation between the two growth phases, which suggests that, globally, the genes associated with these two life forms are poorly conserved. This poor conservation underscores the importance of developing specific tools for emerging model species that are distantly related to the classical ones. Taken together, our results provide insights into transcriptome regulation and molecular specificity in O. novo-ulmi and offer a new perspective for understanding fungal dimorphism.


Assuntos
Genes Fúngicos , Ophiostoma/genética , Transcriptoma , Candida albicans/genética , Sequência Conservada , Histoplasma/genética , Estágios do Ciclo de Vida/genética , Micélio/metabolismo , Ophiostoma/crescimento & desenvolvimento , Ophiostoma/patogenicidade , Virulência/genética
7.
Genome Biol Evol ; 7(2): 410-30, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539722

RESUMO

The ascomycete fungus Ophiostoma novo-ulmi is responsible for the pandemic of Dutch elm disease that has been ravaging Europe and North America for 50 years. We proceeded to annotate the genome of the O. novo-ulmi strain H327 that was sequenced in 2012. The 31.784-Mb nuclear genome (50.1% GC) is organized into 8 chromosomes containing a total of 8,640 protein-coding genes that we validated with RNA sequencing analysis. Approximately 53% of these genes have their closest match to Grosmannia clavigera kw1407, followed by 36% in other close Sordariomycetes, 5% in other Pezizomycotina, and surprisingly few (5%) orphans. A relatively small portion (∼3.4%) of the genome is occupied by repeat sequences; however, the mechanism of repeat-induced point mutation appears active in this genome. Approximately 76% of the proteins could be assigned functions using Gene Ontology analysis; we identified 311 carbohydrate-active enzymes, 48 cytochrome P450s, and 1,731 proteins potentially involved in pathogen-host interaction, along with 7 clusters of fungal secondary metabolites. Complementary mating-type locus sequencing, mating tests, and culturing in the presence of elm terpenes were conducted. Our analysis identified a specific genetic arsenal impacting the sexual and vegetative growth, phytopathogenicity, and signaling/plant-defense-degradation relationship between O. novo-ulmi and its elm host and insect vectors.


Assuntos
Genoma Fúngico , Anotação de Sequência Molecular , Ophiostoma/genética , Ophiostoma/patogenicidade , Doenças das Plantas/microbiologia , Ulmus/microbiologia , Composição de Bases/genética , Cromossomos Fúngicos/genética , Genes Fúngicos Tipo Acasalamento , Dados de Sequência Molecular , Retroelementos/genética , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA