Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Adv Healthc Mater ; 12(22): e2202840, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219011

RESUMO

Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.


Assuntos
Bioimpressão , Microgéis , Camundongos , Humanos , Animais , Engenharia Tecidual/métodos , Bioimpressão/métodos , Materiais Biocompatíveis , Hidrogéis , Alicerces Teciduais , Impressão Tridimensional
2.
Mol Ther Methods Clin Dev ; 27: 452-463, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36419468

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intra-lysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo correction of neural stem cells derived from Naglu -/- mice (iNSCs) induced pluripotent stem cells (iPSC) using a modified enzyme in which human NAGLU is fused to an insulin-like growth factor II receptor binding peptide in order to improve enzyme uptake. After brain transplantation of corrected iNSCs into Naglu -/- mice and long-term evaluation of their impact, we successfully detected NAGLU-IGFII activity in all transplanted animals. We found decreased lysosomal accumulation and reduced astrocytosis and microglial activation throughout transplanted brains. We also identified a novel neuropathological phenotype in untreated Naglu -/- brains with decreased levels of the neuronal marker Map2 and accumulation of synaptophysin-positive aggregates. Upon transplantation, we restored levels of Map2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.

3.
Front Endocrinol (Lausanne) ; 12: 732431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589059

RESUMO

Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/tendências , Animais , Sobrevivência de Enxerto , Humanos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos
4.
J Pathol ; 255(1): 41-51, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050678

RESUMO

Down syndrome (DS), also known as trisomy 21 (T21), is the most common human chromosomal anomaly. Although DS can affect many organ systems, lung and heart disease are the leading causes of death. An abundance of existing data suggests that lung abnormalities originate postnatally in DS. However, a single report of branching insufficiency in DS has inferred a potential prenatal origin. The histology of T21 fetal lungs (n = 15) was assessed by an experienced pathologist. Spatial differences in cellular phenotypes were examined using immunohistochemistry (IHC). Comprehensive gene expression in prenatal T21 lungs (n = 19), and age-matched controls (n = 19), was performed using high-throughput RNA sequencing (RNAseq) and validated by RT-qPCR. Histopathological abnormalities were observed in approximately half of T21 prenatal lung samples analyzed, which included dilated terminal airways/acinar tubules, dilated lymphatics, and arterial wall thickening. IHC for Ki67 revealed significant reductions in epithelial and mesenchymal cell proliferation, predominantly in tissues displaying pathology. IHC demonstrated that airway smooth muscle was reduced and discontinuous in the proximal airway in conjunction with reduced SOX2. RNAseq identified 118 genes significantly dysregulated (FDR < 0.05) in T21 lung when unadjusted and 316 genes when adjusted for age. Ontology analysis showed that IFN pathway genes were appreciably upregulated, whereas complement and coagulation cascades and extracellular matrix pathway genes were downregulated. RT-qPCR confirmed the changes in genes associated with these pathways in prenatal T21 lungs. Our data demonstrate that specific histological, cellular, and molecular abnormalities occur prenatally in different compartments of human T21 lung, which could be representative of premature stage progression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Síndrome de Down/patologia , Pulmão/anormalidades , Feto , Humanos
5.
J Endod ; 46(9S): S101-S104, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32950181

RESUMO

Spontaneous healing and recovery of innervated and vascularized tissues are limited. In particular, the complexity of the central nervous system's anatomy, physiology, and pathobiology make efforts to develop effective therapeutic strategies exceptionally challenging. Repairing the brain after injury implies restoring the tissue architecture of the neural and vascular networks both morphologically and functionally. The substantial clinical burden and disability after a central nervous system injury urges the need to explore therapeutic solutions outside the confine of conventional approaches used in regenerative medicine. Recent advances in tissue engineering and material sciences have developed biomimetic materials that can be injected or implanted directly to the site of damage to provide physical support to cell infiltration and growth, promoting tissue development and de novo formation of vascular and axonal networks through cell transplantation and/or controlled release of bioactive cues. These approaches have shown promise in promoting the endogenous repair machinery of the brain and controlling the growth and development of functional vascular and neural networks in the lesion to promote long-term functional recovery. This narrative review presents a comprehensive look at recent advances using proangiogenic engineered materials and drug delivery systems for brain repair after stroke.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Encéfalo , Medicina Regenerativa , Cicatrização
6.
Adv Mater ; 31(33): e1900727, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125138

RESUMO

The central nervous system (CNS) plays a central role in the control of sensory and motor functions, and the disruption of its barriers can result in severe and debilitating neurological disorders. Neurotrophins are promising therapeutic agents for neural regeneration in the damaged CNS. However, their penetration across the blood-brain barrier remains a formidable challenge, representing a bottleneck for brain and spinal cord therapy. Herein, a nanocapsule-based delivery system is reported that enables intravenously injected nerve growth factor (NGF) to enter the CNS in healthy mice and nonhuman primates. Under pathological conditions, the delivery of NGF enables neural regeneration, tissue remodeling, and functional recovery in mice with spinal cord injury. This technology can be utilized to deliver other neurotrophins and growth factors to the CNS, opening a new avenue for tissue engineering and the treatment of CNS disorders and neurodegenerative diseases.


Assuntos
Barreira Hematoencefálica/metabolismo , Nanocápsulas/química , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/química , Barreira Hematoencefálica/ultraestrutura , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos , Injeções Intravenosas , Macaca mulatta , Metacrilatos/química , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/líquido cefalorraquidiano , Células PC12 , Permeabilidade , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Poliésteres/química , Ratos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
7.
Nat Mater ; 17(7): 642-651, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784996

RESUMO

Stroke is the primary cause of disability due to the brain's limited ability to regenerate damaged tissue. After stroke, an increased inflammatory and immune response coupled with severely limited angiogenesis and neuronal growth results in a stroke cavity devoid of normal brain tissue. In the adult, therapeutic angiogenic materials have been used to repair ischaemic tissues through the formation of vascular networks. However, whether a therapeutic angiogenic material can regenerate brain tissue and promote neural repair is poorly understood. Here we show that the delivery of an engineered immune-modulating angiogenic biomaterial directly to the stroke cavity promotes tissue formation de novo, and results in axonal networks along thee generated blood vessels. This regenerated tissue produces functional recovery through the established axonal networks. Thus, this biomaterials approach generates a vascularized network of regenerated functional neuronal connections within previously dead tissue and lays the groundwork for the use of angiogenic materials to repair other neurologically diseased tissues.


Assuntos
Materiais Biocompatíveis , Encéfalo/patologia , Neovascularização Fisiológica , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Heparina/administração & dosagem , Humanos , Nanopartículas/administração & dosagem , Neurogênese , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Nat Mater ; 16(9): 953-961, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28783156

RESUMO

Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5ß1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvß3 integrin binding. In vitro, α3/α5ß1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5ß1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvß3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.


Assuntos
Prótese Vascular , Permeabilidade Capilar , Fibronectinas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hidrogéis/química , Integrina alfa3/metabolismo , Integrina alfa5beta1/metabolismo , Bioprótese , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Engenharia Tecidual/métodos
9.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650574

RESUMO

With the number of deaths due to stroke decreasing, more individuals are forced to live with crippling disability resulting from the stroke. To date, no therapeutics exist after the first 4.5 h after the stroke onset, aside from rest and physical therapy. Following stroke, a large influx of astrocytes and microglia releasing proinflammatory cytokines leads to dramatic inflammation and glial scar formation, affecting brain tissue's ability to repair itself. Pathological conditions, such as a stroke, trigger neural progenitor cells (NPCs) proliferation and migration toward the damaged site. However, these progenitors are often found far from the cavity or the peri-infarct tissue. Poststroke tissue remodeling results in a compartmentalized cavity that can directly accept a therapeutic material injection. Here, this paper shows that the injection of a porous hyaluronic acid hydrogel into the stroke cavity significantly reduces the inflammatory response following stroke while increasing peri-infarct vascularization compared to nonporous hydrogel controls and stroke only controls. In addition, it is shown that the injection of this material impacts NPCs proliferation and migration at the subventricular zone niche and results, for the first time, in NPC migration into the stroke site.


Assuntos
Hidrogéis/química , Gliose , Humanos , Inflamação , Células-Tronco Neurais , Acidente Vascular Cerebral
10.
Data Brief ; 10: 202-209, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27995155

RESUMO

This article presents data related to the research article "Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain" (P. Moshayedi, L.R. Nih, I.L. Llorente, A.R. Berg, J. Cinkornpumin, W.E. Lowry et al., 2016) [1] and focuses on the biocompatibility aspects of the hydrogel, including its stiffness and the inflammatory response of the transplanted organ. We have developed an injectable hyaluronic acid (HA)-based hydrogel for stem cell culture and transplantation, to promote brain tissue repair after stroke. This 3D biomaterial was engineered to bind bioactive signals such as adhesive motifs, as well as releasing growth factors while supporting cell growth and tissue infiltration. We used a Design of Experiment approach to create a complex matrix environment in vitro by keeping the hydrogel platform and cell type constant across conditions while systematically varying peptide motifs and growth factors. The optimized HA hydrogel promoted survival of encapsulated human induced pluripotent stem cell derived-neural progenitor cells (iPS-NPCs) after transplantation into the stroke cavity and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. The highlights of this article include: (1) Data of cell and bioactive signals addition on the hydrogel mechanical properties and growth factor diffusion, (2) the use of a design of Experiment (DOE) approach (M.W. 2 Weible and T. Chan-Ling, 2007) [2] to select multi-factorial experimental conditions, and (3) Inflammatory response and cell survival after transplantation.

11.
Biomaterials ; 105: 145-155, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521617

RESUMO

Stem cell therapies have shown promise in promoting recovery in stroke but have been limited by poor cell survival and differentiation. We have developed a hyaluronic acid (HA)-based self-polymerizing hydrogel that serves as a platform for adhesion of structural motifs and a depot release for growth factors to promote transplant stem cell survival and differentiation. We took an iterative approach in optimizing the complex combination of mechanical, biochemical and biological properties of an HA cell scaffold. First, we optimized stiffness for a minimal reaction of adjacent brain to the transplant. Next hydrogel crosslinkers sensitive to matrix metalloproteinases (MMP) were incorporated as they promoted vascularization. Finally, candidate adhesion motifs and growth factors were systemically changed in vitro using a design of experiment approach to optimize stem cell survival or proliferation. The optimized HA hydrogel, tested in vivo, promoted survival of encapsulated human neural progenitor cells (iPS-NPCs) after transplantation into the stroke core and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. This HA hydrogel can be tracked in vivo with MRI. A hydrogel can serve as a therapeutic adjunct in a stem cell therapy through selective control of stem cell survival and differentiation in vivo.


Assuntos
Encéfalo/patologia , Hidrogéis/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Alicerces Teciduais , Animais , Encéfalo/cirurgia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Regeneração Tecidual Guiada/instrumentação , Humanos , Ácido Hialurônico/química , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Propriedades de Superfície , Resistência à Tração , Resultado do Tratamento , Viscosidade
12.
Curr Opin Biotechnol ; 40: 155-163, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27162093

RESUMO

Stroke disability is the only major disease without an effective treatment. The substantial clinical burden of stroke in disabled survivors and the lack of a medical therapy that promotes recovery provide an opportunity to explore the use of biomaterials to promote brain repair after stroke. Hydrogels can be injected as a liquid and solidify in situ to form a gelatinous solid with similar mechanical properties to the brain. These biomaterials have been recently explored to generate pro-repair environments within the damaged organ. This review highlights the clinical problem of stroke treatment and discusses recent advances in using in situ forming hydrogels for brain repair.


Assuntos
Materiais Biocompatíveis/química , Encefalopatias/terapia , Hidrogéis/administração & dosagem , Acidente Vascular Cerebral/complicações , Animais , Encefalopatias/etiologia , Humanos , Hidrogéis/química , Cicatrização
13.
Adv Mater ; 27(24): 3620-5, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25962336
14.
J Clin Invest ; 123(3): 1176-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454767

RESUMO

Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1ß production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1ß production by macrophages through mediation of integrin ß(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1ß production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1ß production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1ß production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1ß production.


Assuntos
Antígenos de Superfície/fisiologia , Infarto da Artéria Cerebral Média/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Imunidade Inata , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Integrina beta3/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Receptores Purinérgicos P2X7/metabolismo
15.
Development ; 140(8): 1720-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23533173

RESUMO

Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/fisiopatologia , Proteínas de Membrana/metabolismo , Microvasos/embriologia , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio , Imuno-Histoquímica , Isquemia/metabolismo , Camundongos , Microvasos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fluxo Sanguíneo Regional/fisiologia , Microtomografia por Raio-X
16.
Eur J Neurosci ; 35(8): 1208-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22512253

RESUMO

Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke.


Assuntos
Células Endoteliais/transplante , Infarto da Artéria Cerebral Média/terapia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Células-Tronco , Inibidores da Angiogênese/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Endostatinas/farmacologia , Células Endoteliais/fisiologia , Sangue Fetal/citologia , Receptores Frizzled/metabolismo , Lateralidade Funcional , Humanos , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/fisiologia , Neovascularização Patológica/etiologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA