Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39314055

RESUMO

Understanding isotope fractionation mechanisms is fundamental for analyses of plant ecophysiology and paleoclimate based on tree-ring isotope data. To gain new insights into isotope fractionation, we analysed intramolecular 13C discrimination in tree-ring glucose (Δi', i = C-1 to C-6) and metabolic deuterium fractionation at H1 and H2 (εmet) combinedly. This dual-isotope approach was used for isotope-signal deconvolution. We found evidence for metabolic processes affecting Δ1' and Δ3', which respond to air vapour pressure deficit (VPD), and processes affecting Δ1', Δ2', and εmet, which respond to precipitation but not VPD. These relationships exhibit change points dividing a period of homeostasis (1961-1980) from a period of metabolic adjustment (1983-1995). Homeostasis may result from sufficient groundwater availability. Additionally, we found Δ5' and Δ6' relationships with radiation and temperature, which are temporally stable and consistent with previously proposed isotope fractionation mechanisms. Based on the multitude of climate covariables, intramolecular carbon isotope analysis has a remarkable potential for climate reconstruction. While isotope fractionation beyond leaves is currently considered to be constant, we propose significant parts of the carbon and hydrogen isotope variation in tree-ring glucose originate in stems (precipitation-dependent signals). As basis for follow-up studies, we propose mechanisms introducing Δ1', Δ2', Δ3', and εmet variability.

2.
Biomacromolecules ; 24(12): 5605-5619, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950687

RESUMO

Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.


Assuntos
Celulose , Hidrogéis , Humanos , Bandagens , Oxirredução , Fibroblastos
3.
Adv Sci (Weinh) ; 10(14): e2206409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935365

RESUMO

Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Plantas , Arabidopsis/fisiologia , Eletrônica , Bombas de Íon
4.
Nanomaterials (Basel) ; 12(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234576

RESUMO

Cellulose nanofibrils can be derived from the native load-bearing cellulose microfibrils in wood. These microfibrils are synthesized by a cellulose synthase enzyme complex that resides in the plasma membrane of developing wood cells. It was previously shown that transgenic hybrid aspen trees with reduced expression of CSI1 have different wood mechanics and cellulose microfibril properties. We hypothesized that these changes in the native cellulose may affect the quality of the corresponding nanofibrils. To test this hypothesis, wood from wild-type and transgenic trees with reduced expression of CSI1 was subjected to oxidative nanofibril isolation. The transgenic wood-extracted nanofibrils exhibited a significantly lower suspension viscosity and estimated surface area than the wild-type nanofibrils. Furthermore, the nanofibril networks manufactured from the transgenics exhibited high stiffness, as well as reduced water uptake, tensile strength, strain-to-break, and degree of polymerization. Presumably, the difference in wood properties caused by the decreased expression of CSI1 resulted in nanofibrils with distinctive qualities. The observed changes in the physicochemical properties suggest that the differences were caused by changes in the apparent nanofibril aspect ratio and surface accessibility. This study demonstrates the possibility of influencing wood-derived nanofibril quality through the genetic engineering of trees.

5.
Curr Biol ; 32(16): 3619-3627.e4, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35820419

RESUMO

All photosynthetic organisms balance CO2 assimilation with growth and carbon storage. Stored carbon is used for growth at night and when demand exceeds assimilation. Gaining a mechanistic understanding of carbon partitioning between storage and growth in trees is important for biological studies and for estimating the potential of terrestrial photosynthesis to sequester anthropogenic CO2 emissions.1,2 Starch represents the main carbon storage in plants.3,4 To examine the carbon storage mechanism and role of starch during tree growth, we generated and characterized low-starch hybrid aspen (Populus tremula × tremuloides) trees using CRISPR-Cas9-mediated gene editing of two PHOSPHOGLUCOMUTASE (PGM) genes coding for plastidial PGM isoforms essential for starch biosynthesis. We demonstrate that starch deficiency does not reduce tree growth even in short days, showing that starch is not a critical carbon reserve during diel growth of aspen. The low-starch trees assimilated up to ∼30% less CO2 compared to the wild type under a range of irradiance levels, but this did not reduce growth or wood density. This implies that aspen growth is not limited by carbon assimilation under benign growth conditions. Moreover, the timing of bud set and bud flush in the low-starch trees was not altered, implying that starch reserves are not critical for the seasonal growth-dormancy cycle. The findings are consistent with a passive starch storage mechanism that contrasts with the annual Arabidopsis and indicate that the capacity of the aspen to absorb CO2 is limited by the rate of sink tissue growth.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Carbono , Dióxido de Carbono , Fotossíntese , Folhas de Planta , Amido/metabolismo
6.
Plant J ; 110(5): 1493-1497, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362151

RESUMO

Biosynthesis of plant cell walls requires UDP-glucose as the substrate for cellulose biosynthesis, and as an intermediate for the synthesis of other matrix polysaccharides. The sucrose cleaving enzyme sucrose synthase (SUS) is thought to have a central role in UDP-glucose biosynthesis, and a long-held and much debated hypothesis postulates that SUS is required to supply UDP-glucose to cellulose biosynthesis. To investigate the role of SUS in cellulose biosynthesis of Arabidopsis thaliana we characterized mutants in which four or all six Arabidopsis SUS genes were disrupted. These sus mutants showed no growth phenotypes, vascular tissue cell wall defects, or changes in cellulose content. Moreover, the UDP-glucose content of rosette leaves of the sextuple sus mutants was increased by approximately 20% compared with wild type. It can thus be concluded that cellulose biosynthesis is able to employ alternative UDP-glucose biosynthesis pathway(s), and thereby the model of SUS requirements for cellulose biosynthesis in Arabidopsis can be refuted.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/metabolismo
7.
Nat Plants ; 8(5): 574-582, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484201

RESUMO

Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Adenosina Difosfato Glucose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucosiltransferases , Folhas de Planta/metabolismo , Amido/metabolismo , Sacarose/metabolismo
8.
Plant J ; 110(5): 1271-1285, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289007

RESUMO

Cellulose is the main structural component in the plant cell walls. We show that two glycosyltransferase family 31 (GT31) enzymes of Arabidopsis thaliana, here named cellulose synthesis associated glycosyltransferases 1 and 2 (CAGE1 and 2), influence both primary and secondary cell wall cellulose biosynthesis. cage1cage2 mutants show primary cell wall defects manifesting as impaired growth and cell expansion in seedlings and etiolated hypocotyls, along with secondary cell wall defects, apparent as collapsed xylem vessels and reduced xylem wall thickness in the inflorescence stem. Single and double cage mutants also show increased sensitivity to the cellulose biosynthesis inhibitor isoxaben. The cage1cage2 phenotypes were associated with an approximately 30% reduction in cellulose content, an approximately 50% reduction in secondary cell wall CELLULOSE SYNTHASE (CESA) protein levels in stems and reduced cellulose biosynthesis rate in seedlings. CESA transcript levels were not significantly altered in cage1cage2 mutants, suggesting that the reduction in CESA levels was caused by a post-transcriptional mechanism. Both CAGE1 and 2 localize to the Golgi apparatus and are predicted to synthesize ß-1,3-galactans on arabinogalactan proteins. In line with this, the cage1cage2 mutants exhibit reduced levels of ß-Yariv binding to arabinogalactan protein linked ß-1,3-galactan. This leads us to hypothesize that defects in arabinogalactan biosynthesis underlie the cellulose deficiency of the mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Plântula/genética , Plântula/metabolismo
9.
Tree Physiol ; 42(3): 458-487, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34542151

RESUMO

Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.


Assuntos
Carbono , Árvores , Carbono/metabolismo , Floema/metabolismo , Fotossíntese , Árvores/metabolismo , Xilema/metabolismo
10.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947163

RESUMO

Wood from field-grown poplars with different genotypes and varying lignin content (17.4 wt % to 30.0 wt %) were subjected to one-pot 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl catalyzed oxidation and high-pressure homogenization in order to investigate nanofibrillation following simultaneous delignification and cellulose oxidation. When comparing low and high lignin wood it was found that the high lignin wood was more easily fibrillated as indicated by a higher nanofibril yield (68% and 45%) and suspension viscosity (27 and 15 mPa·s). The nanofibrils were monodisperse with diameter ranging between 1.2 and 2.0 nm as measured using atomic force microscopy. Slightly less cellulose oxidation (0.44 and 0.68 mmol·g-1) together with a reduced process yield (36% and 44%) was also found which showed that the removal of a larger amount of lignin increased the efficiency of the homogenization step despite slightly reduced oxidation of the nanofibril surfaces. The surface area of oxidized high lignin wood was also higher than low lignin wood (114 m2·g-1 and 76 m2·g-1) which implicates porosity as a factor that can influence cellulose nanofibril isolation from wood in a beneficial manner.

11.
iScience ; 24(1): 101966, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33474535

RESUMO

Bioelectronic devices that convert biochemical signals to electronic readout enable biosensing with high spatiotemporal resolution. These technologies have been primarily applied in biomedicine while in plants sensing is mainly based on invasive methods that require tissue sampling, hindering in-vivo detection and having poor spatiotemporal resolution. Here, we developed enzymatic biosensors based on organic electrochemical transistors (OECTs) for in-vivo and real-time monitoring of sugar fluctuations in the vascular tissue of trees. The glucose and sucrose OECT-biosensors were implanted into the vascular tissue of trees and were operated through a low-cost portable unit for 48hr. Our work consists a proof-of-concept study where implantable OECT-biosensors not only allow real-time monitoring of metabolites in plants but also reveal new insights into diurnal sugar homeostasis. We anticipate that this work will contribute to establishing bioelectronic technologies as powerful minimally invasive tools in plant science, agriculture and forestry.

12.
New Phytol ; 229(1): 186-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491203

RESUMO

Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling, 13 CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The 13 CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.


Assuntos
Populus , Madeira , Carbono , Glucosiltransferases , Populus/genética , Árvores
13.
Front Plant Sci ; 11: 611607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381142

RESUMO

Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with ß-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.

14.
New Phytol ; 228(5): 1559-1572, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32648607

RESUMO

Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.


Assuntos
Populus , Proteômica , Madeira , Câmbio , Regulação da Expressão Gênica de Plantas , Populus/genética , Xilema
15.
Plant J ; 103(5): 1858-1868, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32526794

RESUMO

Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).


Assuntos
Folhas de Planta/anatomia & histologia , Proteínas de Plantas/fisiologia , Populus/anatomia & histologia , Madeira/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Celulose/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Resistência à Tração , Árvores/anatomia & histologia , Árvores/metabolismo , Xilema/anatomia & histologia
16.
J Biol Chem ; 295(31): 10581-10592, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493777

RESUMO

Plant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-ß-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media. This root phenotype was associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Characterization of recombinant GH43 variants revealed that the exo-ß-1,3-galactosidase activity of GH43 enzymes is hindered by ß-1,6 branches on ß-1,3-galactans. In line with this steric hindrance, the recombinant GH43 variants did not release galactose from cell wall-extracted glycoproteins or AGP-rich gum arabic. These results indicate that the lack of exo-ß-1,3-galactosidase activity alters cell wall extensibility in roots, a phenotype that could be explained by the involvement of galactosidases in AGP glycan biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Galactosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Mucoproteínas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Galactosiltransferases/genética , Glicosídeo Hidrolases/genética , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
17.
Plant Methods ; 15: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719834

RESUMO

BACKGROUND: Sugar phosphates are important intermediates of central carbon metabolism in biological systems, with roles in glycolysis, the pentose-phosphate pathway, tricarboxylic acid (TCA) cycle, and many other biosynthesis pathways. Understanding central carbon metabolism requires a simple, robust and comprehensive analytical method. However, sugar phosphates are notoriously difficult to analyze by traditional reversed phase liquid chromatography. RESULTS: Here, we show a two-step derivatization of sugar phosphates by methoxylamine and propionic acid anhydride after chloroform/methanol (3:7) extraction from Populus leaf and developing wood that improves separation, identification and quantification of sugar phosphates by ultra high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS). Standard curves of authentic sugar phosphates were generated for concentrations from pg to ng/µl with a correlation coefficient R 2 > 0.99. The method showed high sensitivity and repeatability with relative standard deviation (RSD) < 20% based on repeated extraction, derivatization and detection. The analytical accuracy for Populus leaf extracts, determined by a two-level spiking approach of selected metabolites, was 79-107%. CONCLUSION: The results show the reliability of combined reversed phase liquid chromatography-tandem mass spectrometry for sugar phosphate analysis and demonstrate the presence of two unknown sugar phosphates in Populus extracts.

18.
Plant J ; 100(1): 83-100, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166032

RESUMO

Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.


Assuntos
Genes de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Picea/genética , Locos de Características Quantitativas/genética , Madeira/genética , Algoritmos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Noruega , Fenótipo , Picea/classificação , Polimorfismo de Nucleotídeo Único , Madeira/classificação
19.
Plant Cell ; 31(7): 1446-1465, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023726

RESUMO

Currently one-third of the proteins encoded by the Arabidopsis (Arabidopsis thaliana) genome are of unknown function. Some of these unknown proteins are likely to be involved in uncharacterized vital biological processes. Evolutionarily conserved single copy genes in flowering plants have been shown to be enriched in essential housekeeping functions. This together with publicly available gene expression data allows for a focused search for uncharacterized essential genes. Here we identify an essential single copy gene called OPENER (OPNR) in Arabidopsis. We show that OPNR is predominantly expressed in actively dividing cells and performs essential functions in seed development and root meristem maintenance. Cell cycle tracking using 5-ethynyl-2'-deoxyuridine staining and fluorescent cell cycle markers together with the increased size of nucleolus and nucleus in opnr mutants indicate that OPNR is required for cell cycle progression through the S or G2 phases. Intriguingly, OPNR localizes to the nuclear envelope and mitochondria. Furthermore, the nuclear envelope localization of OPNR is dependent on its interaction with nuclear inner membrane Sad1/UNC-84 (SUN) domain proteins SUN1 and SUN2. Taken together our results open a line of investigation into an evolutionarily conserved essential cellular process occurring in both the nuclear envelopes and mitochondria of dividing cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ciclo Celular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Alelos , Arabidopsis/embriologia , Arabidopsis/genética , Proliferação de Células , Sequência Conservada/genética , DNA Bacteriano/genética , Endosperma/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Genes Essenciais , Testes Genéticos , Proteínas de Membrana/metabolismo , Mitocôndrias/ultraestrutura , Tamanho Mitocondrial , Mutagênese Insercional/genética , Mutação/genética , Fenótipo , Raízes de Plantas/citologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA