Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(6): 063514, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243556

RESUMO

Time-resolved radiography can be used to obtain absolute shock Hugoniot states by simultaneously measuring at least two mechanical parameters of the shock, and this technique is particularly suitable for one-dimensional converging shocks where a single experiment probes a range of pressures as the converging shock strengthens. However, at sufficiently high pressures, the shocked material becomes hot enough that the x-ray opacity falls significantly. If the system includes a Lagrangian marker such that the mass within the marker is known, this additional information can be used to constrain the opacity as well as the Hugoniot state. In the limit that the opacity changes only on shock heating, and not significantly on subsequent isentropic compression, the opacity of the shocked material can be determined uniquely. More generally, it is necessary to assume the form of the variation of opacity with isentropic compression or to introduce multiple marker layers. Alternatively, assuming either the equation of state or the opacity, the presence of a marker layer in such experiments enables the non-assumed property to be deduced more accurately than from the radiographic density reconstruction alone. An example analysis is shown for measurements of a converging shock wave in polystyrene at the National Ignition Facility.

2.
Rev Sci Instrum ; 92(12): 123511, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972450

RESUMO

This paper describes how x-ray and neutron distribution functions can be useful tools to visualize the conditions measured in many types of plasma physics experiments. In particular, we model a standard inertial confinement fusion ignition capsule that consists of a Si doped plastic ablator surrounding a layer of deuterium-tritium (DT) ice as the yield varies from 18 kJ to 16.7 MJ and use the distribution functions to show that neutrons and high energy x rays (15 keV) are produced under similar conditions when the yield is low. However, as the capsule starts to support a propagating burn due to alpha heating, the x rays and neutrons are produced under somewhat different conditions in different parts of the plasma. In particular, the x-ray production takes place mainly in the hot plastic ablator for the full yield ignition capsule under quite different plasma conditions from the DT region producing the 14 MeV neutrons, which results in x-ray images with larger radii than the corresponding neutron images. These same distribution functions can be applied to many other plasma physics experiments.

3.
Phys Rev E ; 102(5-1): 053203, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327061

RESUMO

Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.

4.
Phys Rev E ; 102(4-1): 043209, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212725

RESUMO

Cross sections for photo-induced bound-free and free-free transitions in plasmas are evaluated in the average-atom approximation and applied to determine opacities of dense plasmas of light elements. Parameters characterizing the plasmas (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. Lowest-order calculations of the free-free cross sections, which diverge in the low-frequency limit, are regularized by accounting for the finite electron-ion relaxation time. The resulting analysis provides the basis for average-atom studies of plasma opacities. Such studies are presented for dense lithium, beryllium, boron, and carbon. Applications are given to Rosseland mean opacities of dense hydrogen and deuterium plasmas and to comparisons of free-free to bound-free opacities in shock-compressed plasmas. Average-atom cross section and opacity calculations are extended to plasmas consisting of more than one ionic species, boron nitride, polystyrene, and a composite H, He, C plasma.

5.
Nature ; 584(7819): 51-54, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760045

RESUMO

White dwarfs represent the final state of evolution for most stars1-3. Certain classes of white dwarfs pulsate4,5, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution6. However, the high-energy-density states that exist in white dwarfs are extremely difficult to reach and to measure in the laboratory, so theoretical predictions are largely untested at these conditions. Here we report measurements of the relationship between pressure and density along the principal shock Hugoniot (equations describing the state of the sample material before and after the passage of the shock derived from conservation laws) of hydrocarbon to within five per cent. The observed maximum compressibility is consistent with theoretical models that include detailed electronic structure. This is relevant for the equation of state of matter at pressures ranging from 100 million to 450 million atmospheres, where the understanding of white dwarf physics is sensitive to the equation of state and where models differ considerably. The measurements test these equation-of-state relations that are used in the modelling of white dwarfs and inertial confinement fusion experiments7,8, and we predict an increase in compressibility due to ionization of the inner-core orbitals of carbon. We also find that a detailed treatment of the electronic structure and the electron degeneracy pressure is required to capture the measured shape of the pressure-density evolution for hydrocarbon before peak compression. Our results illuminate the equation of state of the white dwarf envelope (the region surrounding the stellar core that contains partially ionized and partially degenerate non-ideal plasmas), which is a weak link in the constitutive physics informing the structure and evolution of white dwarf stars9.

6.
Phys Rev E ; 98(2-1): 023205, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253522

RESUMO

We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1×10^{4}-5.2×10^{8} K) and densities (0.25-49 g/cm^{3}) and experimental shock Hugoniot data at unprecedented high pressures (5608±118 GPa). The calculations are performed with first-principles methods combining path-integral Monte Carlo (PIMC) at high temperatures and density-functional-theory molecular-dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference <1.5 Hartree/boron in energy and <5% in pressure) at 5.1×10^{5} K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semiempirical EOS table (LEOS 50). We investigate the self-diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high-pressure and -temperature conditions. We also study the sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on applying pressure multipliers to LEOS 50 and by utilizing a new EOS model based on our ab initio simulations via one-dimensional radiation-hydrodynamic calculations. The results are valuable for future theoretical and experimental studies and engineering design in high-energy density research.

7.
Rev Sci Instrum ; 89(5): 053505, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864815

RESUMO

The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 2): 016404, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907195

RESUMO

We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.

9.
Appl Opt ; 44(34): 7295-301, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16353798

RESUMO

Utilizing a new average atom code, we calculate the index of refraction in C, Al, Ti, and Pd plasmas and show many conditions over which the bound-electron contribution dominates the free electrons as we explore photon energies from the optical to 100 eV (12 nm) soft x rays. For decades measurement of the electron density in plasmas by interferometers has relied on the approximation that the index of refraction in a plasma is due solely to the free electrons and therefore is less than 1. Recent measurements of Al plasmas using x-ray laser interferometers observed fringes bending in the opposite direction than expected due to the bound-electron contribution causing the index of refraction to be larger than 1. During the next decade x-ray free-electron lasers and other sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths, so understanding the index of refraction in plasmas is essential.

10.
Opt Lett ; 29(22): 2677-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15552682

RESUMO

Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.

11.
Appl Opt ; 43(19): 3938-46, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15250561

RESUMO

We describe a soft-x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high-throughput amplitude-division interferometer and a 14.7-nm transient-inversion soft-x-ray laser that produces approximately 5-ps pulses. Because of its picosecond resolution and short-wavelength scalability, this technique has the potential for extending the high inherent precision of soft-x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confinement fusion. Results of its use in the diagnostics of dense large-scale laser-created plasmas are presented.

12.
Opt Lett ; 28(22): 2249-51, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14649957

RESUMO

Although bright x-ray sources exist at shorter wavelengths, the development of sophisticated diagnostics with x-ray laser sources has been restricted to wavelengths longer than 12.5 nm because of the limitations of the widely used Mo:Si multilayer mirrors. With the novel Mo:Y multilayer mirrors that we present, many x-ray laser applications can be extended to the 7-12-nm range. We demonstrate this new capability by imaging the near-field output of the Ni-like Sn laser at 11.9 nm.

13.
Opt Lett ; 28(22): 2261-3, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14649961

RESUMO

We present what is to our knowledge the first longitudinal coherence measurement of a transient inversion collisional x-ray laser. We investigated the picosecond output of a Ni-like Pd x-ray laser at 14.68 nm generated by the COMET laser facility at the Lawrence Livermore National Laboratory. Interference fringes were generated with a Michelson interferometer setup in which a thin multilayer membrane was used as a beam splitter. We determined the longitudinal coherence for the 4d1S0 --> 4p1P1 lasing transition to be approximately 400 microm (1/e half-width) by changing the length of one interferometer arm and measuring the resultant variation in fringe visibility. The inferred gain-narrowed linewidth of approximately 0.29 pm is a factor of 4 less than previously measured in quasi-steady-state x-ray laser schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA