Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0287781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134214

RESUMO

In response to the problem that current multi-city multi-pollutant prediction methods based on one-dimensional undirected graph neural network models cannot accurately reflect the two-dimensional spatial correlations and directedness, this study proposes a four-dimensional directed graph model that can capture the two-dimensional spatial directed information and node correlation information related to multiple factors, as well as extract temporal correlation information at different times. Firstly, A four-dimensional directed GCN model with directed information graph in two-dimensional space was established based on the geographical location of the city. Secondly, Spectral decomposition and tensor operations were then applied to the two-dimensional directed information graph to obtain the graph Fourier coefficients and graph Fourier basis. Thirdly, the graph filter of the four-dimensional directed GCN model was further improved and optimized. Finally, an LSTM network architecture was introduced to construct the four-dimensional directed GCN-LSTM model for synchronous extraction of spatio-temporal information and prediction of atmospheric pollutant concentrations. The study uses the 2020 atmospheric six-parameter data of the Taihu Lake city cluster and applies canonical correlation analysis to confirm the data's temporal, spatial, and multi-factor correlations. Through experimentation, it is verified that the proposed 4D-DGCN-LSTM model achieves a MAE reduction of 1.12%, 4.91%, 5.62%, and 11.67% compared with the 4D-DGCN, GCN-LSTM, GCN, and LSTM models, respectively, indicating the good performance of the 4D-DGCN-LSTM model in predicting multiple types of atmospheric pollutants in various cities.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Cidades , Pesquisa Empírica , Redes Neurais de Computação
2.
PLoS One ; 18(11): e0294278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963129

RESUMO

As for the problem that the traditional single depth prediction model has poor strain capacity to the prediction results of time series data when predicting lake eutrophication, this study takes the multi-factor water quality data affecting lake eutrophication as the main research object. A deep reinforcement learning model is proposed, which can realize the mutual conversion of water quality data prediction models at different times, select the optimal prediction strategy of lake eutrophication at the current time according to its own continuous learning, and improve the reinforcement learning algorithm. Firstly, the greedy factor, the fixed parameter of Agent learning training in reinforcement learning, is introduced into an arctangent function and the mean value reward factor is defined. On this basis, three Q estimates are introduced, and the weight parameters are obtained by calculating the realistic value of Q, taking the average value and the minimum value to update the final Q table, so as to get an Improved MIMO-DD-3Q Learning model. The preliminary prediction results of lake eutrophication are obtained, and the errors obtained are used as the secondary input to continue updating the Q table to build the final Improved MIMO-DD-3Q Learning model, so as to achieve the final prediction of water eutrophication. In this study, multi-factor water quality data of Yongding River in Beijing were selected from 0:00 on July 26, 2021 to 0:00 on September 5, 2021. Firstly, data smoothing and principal component analysis were carried out to confirm that there was a certain correlation between all factors in the occurrence of lake eutrophication. Then, the Improved MIMO-DD-3Q Learning prediction model was used for experimental verification. The results show that the Improved MIMO-DD-3Q Learning model has a good effect in the field of lake eutrophication prediction.


Assuntos
Monitoramento Ambiental , Lagos , Monitoramento Ambiental/métodos , Qualidade da Água , Rios , Eutrofização , China , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA