Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1001845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545202

RESUMO

Candida duobushaemulonii, type II Candida haemulonii complex, is closely related to Candida auris and capable of causing invasive and non-invasive infections in humans. Eleven strains of C. duobushaemulonii were collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), VITEK 2 Yeast Identification Card (YST), and internal transcribed spacer (ITS) sequencing. Whole genome sequencing of C. duobushaemulonii was done to determine their genotypes. Furthermore, C. duobushaemulonii strains were tested by Sensititre YeastOne™ and Clinical and Laboratory Institute (CLSI) broth microdilution panel for antifungal susceptibility. Three C. duobushaemulonii could not be identified by VITEK 2. All 11 isolates had high minimum inhibitory concentrations (MICs) to amphotericin B more than 2 µg/ml. One isolate showed a high MIC value of ≥64 µg/ml to 5-flucytosine. All isolates were wild type (WT) for triazoles and echinocandins. FUR1 variation may result in C. duobushaemulonii with high MIC to 5-flucytosine. Candida duobushaemulonii mainly infects patients with weakened immunity, and the amphotericin B resistance of these isolates might represent a challenge to clinical treatment.

2.
Front Microbiol ; 13: 1036351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466633

RESUMO

Candida haemulonii var. vulnera is a rare variant of C. haemulonii, which has been previously reported to cause human infections. Owing to the close kinship between C. haemulonii sensu stricto and C. haemulonii var. vulnera, accurate identification of C. haemulonii var. vulnera relied on DNA sequencing assay targeting, for example, rDNA internal transcribed spacer (ITS) region. In this work, two strains of C. haemulonii var. vulnera were collected from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET). The identification capacity of three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 YST ID biochemical methods were evaluated against ITS sequencing. In addition, antifungal susceptibility testing was performed using Sensititre YeastOne. Moreover, we comprehensively screened drug-resistant related genes by whole-genome sequencing. The two strains were not correctly identified to species variant level using MALDI-TOF MS and YST ID cards. Both strains were resistant to amphotericin B (minimum inhibitory concentration [MIC] > 2 µg/ml). Moreover, strain F4564 and F4584 exhibited high MIC to fluconazole (>256 µg/ml) and 5-flucytosine (>64 µg/ml), respectively, which were supposed to result from key amino acid substitutions Y132F and G307A in Erg11p and V58fs and G60K substitutions in Fur1p. The rare species C. haemulonii var. vulnera has emerged in China, and such drug-resistant fungal species that can cause invasive diseases require further close attention.

3.
Asian Pac J Trop Med ; 8(10): 829-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26522298

RESUMO

OBJECTIVE: To explore the function and mechanism of microRNA-155 to regulate the angiogenesis after the cerebral infarction of rats through the angiotensin II receptor 1 (AT1R)/vascular endothelial growth factor (VEGF) signaling pathway. METHODS: Female SD rats were chosen for the construction of cerebral infarction model of rats using the modified right middle cerebral artery occlusion. The real-time PCR (RT-PCR) method was employed to detect the expression of microRNA-155 in each group at different time points after the cerebral infarction (1 h, l d, 3 d and 7 d). SD rats were randomly divided into four groups (n = 20 rats): sham operation group (Sham group), MACO group, MACO+microRNA-155 mimic group, and MACO+microRNA-155 inhibitor group. Sham group was given the free graft, while MACO+microRNA-155 mimic group and MACO+microRNA-155 inhibitor group were treated with microRNA-155 mimic and microRNA-155 inhibitor respectively. The Zea Longa 5-point scale was used to score the neurologic impairment of rats in each group; 2, 3, 5-triphenyl tetrazolium chloride staining to evaluate the volume of cerebral infarction of rats in each group; the immunohistochemistry to detect the expression of CD31; Western blot and RT-PCR to detect the expression of AT1R and VEGF receptor 2 (VEGFR2). RESULTS: The expression of microRNA-155 was increased in the cerebral ischemia tissue after the cerebral infarction. It was significantly increased at 1 d of ischemia and maintained at the high level for a long time. Rats in the Sham group had no symptom of neurologic impairment, while rats in the MACO group had the obvious neurologic impairment. After being treated with microRNA-155 inhibitor, the neural function of MACO rats had been improved, with the decreased area of cerebral infarction. But after being treated with microRNA-155 mimic, the neural function was further worsened, with the increased area of cerebral infarction. Results of immunohistochemical assay indicated that microRNA-155 inhibitor could up-regulate the expression of CD31, while microRNA-155 mimic could down-regulate the expression of CD31. The RT-PCR found that, after being treated with microRNA-155 inhibitor, MACO rats had the increased expression of AT1R and VEGFR2 messenger RNA (mRNA); but after being treated with microRNA-155 mimic, the expression of AT1R and VEGFR2 mRNA was decreased. Results of Western blot showed that, after being treated with microRNA-155 inhibitor, MACO rats had the increased expression of AT1R and VEGFR2 mRNA; but after being treated with microRNA-155 mimic, the expression of AT1R and VEGFR2 mRNA was decreased. CONCLUSIONS: The inhibition of microRNA-155 can improve the neurologic impairment of rats with the cerebral infarction, reduce the volume of cerebral infarction and effectively promote the angiogenesis in the region of ischemia, which may be mediated through AT1R/VEGFR2 pathway.

4.
Neurosci Lett ; 600: 38-44, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25962822

RESUMO

The role of actin filaments in allodynia induced by chronic compression of the dorsal root ganglion (DRG) (CCD) and the effects of microfilaments dynamics on transient receptor potential vanilloid 4 (TRPV4) were investigated in this study. Anti-microfilaments agents resulted in dose-dependent and partial reduction in CCD-induced allodynia, which could be prevented by the prior stabilizer administration. In association with the reduction of allodynia by microfilaments' disruption, TRPV4-mediated currents were inhibited by disruptors. In addition, plasma membrane-associated TRPV4 was also depressed by disruptors. The time courses for the changes of TRPV4 activity and distribution in vitro were similar to the time courses for the attenuation of allodynia in vivo. Phalloidin, the stabilizer of microfilaments, did not affect the allodynia in CCD rats. However, phalloidin resulted in reduction and delay of TRPV4 current, which was not consistent with the effect of phalloidin on CCD-induced allodynia. In accordance with the inhibition of TRPV4 activity, the reversal potentials shifted toward more positive voltages and the plasma membrane-associated TRPV4 was depressed by phalloidin. In conclusion, intact actin filaments were necessary for CCD-induced allodynia, and disruptors of microfilaments attenuated CCD-induced allodynia. However, stabilizer of actin filaments did not affect allodynia in CCD rats. Further, TRPV4 contributed to the disruptors-induced attenuation of allodynia in CCD rats.


Assuntos
Citoesqueleto de Actina/fisiologia , Gânglios Espinais/lesões , Hiperalgesia/patologia , Canais de Cátion TRPV/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Doença Crônica , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Ratos Wistar
5.
Behav Brain Res ; 221(1): 19-24, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356247

RESUMO

The aim of this study was to test the hypothesis that nuclear factor-kappa B (NF-κB) is involved in TRPV4-NO pathway in thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rat. Intrathecal administration of two NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC; 10(-1) to 10(-2)M) and BAY (100-50 µM), both induced significantly dose-dependent increase in the paw withdrawal latency (PWL) and decrease in nitric oxide (NO) content in DRG when compared with control rats. Pretreatment with 4α-phorbol 12,13-didecanoate (4α-PDD, transient receptor potential vanilloid 4 (TRPV4) synthetic activator, 1 nm) attenuated the suppressive effects of PDTC (10(-1)M) and BAY (100 µM) on CCD-induced thermal hyperalgesia and NO production. In addition, Western blot analysis indicated that CCD rats exhibited nuclear NF-κB protein expression and low levels of cytoplasmic inhibitory-kappa B (I-κB) expression; the increase in NF-κB expression and decrease in I-κB expression were reversed after intrathecal injection of PDTC. In conclusion, our data suggested that NF-κB could be involved in TRPV4-NO pathway in CCD-induced thermal hyperalgesia.


Assuntos
Analgésicos/uso terapêutico , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , NF-kappa B/fisiologia , Neuralgia/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/agonistas , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Proteínas I-kappa B/biossíntese , Proteínas I-kappa B/fisiologia , Masculino , NF-kappa B/antagonistas & inibidores , NF-kappa B/biossíntese , Síndromes de Compressão Nervosa/complicações , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Forbóis/farmacologia , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Tiocarbamatos/farmacologia , Tiocarbamatos/uso terapêutico
6.
Behav Brain Res ; 208(1): 194-201, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19948193

RESUMO

The aim of the present study was to test the hypothesis that the TRPV4-NO-cGMP-PKG cascade is involved in the maintenance of thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rats. CCD rats showed thermal hyperalgesia and increased nitrite production. Intrathecal administration of ruthenium red (TRPV4 antagonist, 0.1-1 nmol), TRPV4 antisense ODN (TRPV4 AS, 40 microg, daily for 7 days), N(G)-L-nitro-arginine methyl ester (l-NAME, inhibitor of NO synthase, 30-300 nmol), 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor, 50-100 nmol) or 8-(4-Chlorophenylthio) guanosine 3',5'-cyclic Monophosphothioate, Rp-Isomer sodium salt (Rp-8-pCPT-cGMPS, a PKG inhibitor, 25-50 nmol) induced a significant (P<0.001) and dose-dependent increase in the paw withdrawal latency (PWL) compared with control rats, respectively. Ruthenium red (1 nmol), TRPV4 AS (40 microg, daily for 7 days) or L-NAME (300 nmol) decreased nitrite (an index of nitric oxide formation) in the DRG of CCD rats. In addition, the phorbol ester 4alpha-phorbol 12,13-didecanoate (4alpha-PDD, TRPV4 synthetic activator, 1 nmol), co-administered with L-NAME (300 nmol), attenuated the suppressive effect of L-NAME on CCD-induced thermal hyperalgesia and nitrite production. Our data suggested that the TRPV4-NO-cGMP-PKG pathway could be involved in CCD-induced thermal hyperalgesia.


Assuntos
Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Radiculopatia/patologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Limiar da Dor/efeitos dos fármacos , Proteína Quinase C/metabolismo , Radiculopatia/complicações , Ratos , Ratos Wistar , Rutênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA