Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(2): ar24, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088892

RESUMO

PLEKHG4B is a Cdc42-targeting guanine-nucleotide exchange factor implicated in forming epithelial cell-cell junctions. Here we explored the mechanism regulating PLEKHG4B localization. PLEKHG4B localized to the basal membrane in normal Ca2+ medium but accumulated at cell-cell junctions upon ionomycin treatment. Ionomycin-induced junctional localization of PLEKHG4B was suppressed upon disrupting its annexin-A2 (ANXA2)-binding ability. Thus, Ca2+ influx and ANXA2 binding are crucial for PLEKHG4B localization to cell-cell junctions. Treatments with low Ca2+ or BAPTA-AM (an intracellular Ca2+ chelator) suppressed PLEKHG4B localization to the basal membrane. Mutations of the phosphoinositide-binding motif in the pleckstrin homology (PH) domain of PLEKHG4B or masking of membrane phosphatidylinositol-4,5-biphosphate [PI(4,5)P2] suppressed PLEKHG4B localization to the basal membrane, indicating that basal membrane localization of PLEKHG4B requires suitable intracellular Ca2+ levels and PI(4,5)P2 binding of the PH domain. Activation of mechanosensitive ion channels (MSCs) promoted PLEKHG4B localization to cell-cell junctions, and their inhibition suppressed it. Moreover, similar to the PLEKHG4B knockdown phenotypes, inhibition of MSCs or treatment with BAPTA-AM disturbed the integrity of actin filaments at cell-cell junctions. Taken together, our results suggest that Ca2+ influx plays crucial roles in PLEKHG4B localization to cell-cell junctions and the integrity of junctional actin organization, with MSCs contributing to this process.


Assuntos
Cálcio , Ácido Egtázico/análogos & derivados , Junções Intercelulares , Cálcio/metabolismo , Ionomicina , Junções Intercelulares/metabolismo , Citoesqueleto de Actina/metabolismo
2.
J Cell Sci ; 134(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33310911

RESUMO

Cell-cell junction formation requires actin cytoskeletal remodeling. Here, we show that PLEKHG4B, a Rho-guanine nucleotide exchange factor (Rho-GEF), plays a crucial role in epithelial cell-cell junction formation. Knockdown of PLEKHG4B decreased Cdc42 activity and tended to increase RhoA activity in A549 cells. A549 monolayer cells showed 'closed junctions' with closely packed actin bundles along the cell-cell contacts, but PLEKHG4B knockdown suppressed closed junction formation, and PLEKHG4B-knockdown cells exhibited 'open junctions' with split actin bundles located away from the cell-cell boundary. In Ca2+-switch assays, PLEKHG4B knockdown delayed the conversion of open junctions to closed junctions and ß-catenin accumulation at cell-cell junctions. Furthermore, PLEKHG4B knockdown abrogated the reduction in myosin activity normally seen in the later stage of junction formation. The aberrant myosin activation and impairments in closed junction formation in PLEKHG4B-knockdown cells were reverted by ROCK inhibition or LARG/PDZ-RhoGEF knockdown. These results suggest that PLEKHG4B enables actin remodeling during epithelial cell-cell junction maturation, probably by reducing myosin activity in the later stage of junction formation, through suppressing LARG/PDZ-RhoGEF and RhoA-ROCK pathway activities. We also showed that annexin A2 participates in PLEKHG4B localization to cell-cell junctions.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas , Junções Intercelulares , Actinas/genética , Actinas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Intercelulares/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA