Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220510, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310928

RESUMO

Organisms adapt to their environment through different pathways. In vertebrates, xenobiotics are detected, metabolized and eliminated through the inducible xenobiotic-metabolizing pathways (XMP) which can also generate reactive toxic intermediates. In this review, we will discuss the impacts of the chemical exposome complexity on the balance between detoxication and side effects. There is a large discrepancy between the limited number of proteins involved in these pathways (few dozens) and the diversity and complexity of the chemical exposome (tens of thousands of chemicals). Several XMP proteins have a low specificity which allows them to bind and/or metabolize a large number of chemicals. This leads to undesired consequences, such as cross-inhibition, inefficient metabolism, release of toxic intermediates, etc. Furthermore, several XMP proteins have endogenous functions that may be disrupted upon exposure to exogenous chemicals. The gut microbiome produces a very large number of metabolites that enter the body and are part of the chemical exposome. It can metabolize xenobiotics and either eliminate them or lead to toxic derivatives. The complex interactions between chemicals of different origins will be illustrated by the diverse roles of the aryl hydrocarbon receptor which binds and transduces the signals of a large number of xenobiotics, microbiome metabolites, dietary chemicals and endogenous compounds. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Expossoma , Microbioma Gastrointestinal , Animais , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/toxicidade , Inativação Metabólica , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Chem Sci ; 14(31): 8408-8420, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564404

RESUMO

Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.

3.
Sci Adv ; 9(31): eadg2122, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540749

RESUMO

Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinação , Imunoglobulina G , RNA Mensageiro , Quimiocina CXCL13/genética
4.
Toxicology ; 487: 153467, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842454

RESUMO

Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Praguicidas , Humanos , Doença de Parkinson/patologia , Praguicidas/toxicidade , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Tiram
5.
Cell Death Dis ; 13(8): 741, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030261

RESUMO

In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.


Assuntos
Anticorpos Antivirais , Linfócitos T CD4-Positivos , COVID-19 , Imunidade Humoral , Anticorpos Antivirais/imunologia , Apoptose , Linfócitos T CD4-Positivos/citologia , COVID-19/imunologia , Humanos , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Antioxidants (Basel) ; 11(5)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35624894

RESUMO

The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.

7.
Cell Death Differ ; 29(8): 1486-1499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35066575

RESUMO

Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.


Assuntos
COVID-19 , Linfopenia , Apoptose , Linfócitos T CD4-Positivos/metabolismo , Caspases/metabolismo , Proteína Ligante Fas , Humanos , SARS-CoV-2 , Linfócitos T/metabolismo , Receptor fas/metabolismo
8.
Front Cell Neurosci ; 15: 660683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912016

RESUMO

Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, ß-amyloids/Aß and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display ß-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aß and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.

9.
Commun Chem ; 4(1): 31, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36697566

RESUMO

Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond.

10.
J Biol Chem ; 294(32): 11980-11991, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31160323

RESUMO

The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Adenina/química , Adenina/metabolismo , Adenina Fosforribosiltransferase/química , Biocatálise , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Teoria Quântica , Especificidade por Substrato
11.
Cell Chem Biol ; 25(6): 666-676.e4, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29576532

RESUMO

Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Adenina Fosforribosiltransferase/química , Adenina Fosforribosiltransferase/isolamento & purificação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
12.
ACS Chem Biol ; 7(12): 2046-54, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23009307

RESUMO

Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor that synthesizes cGMP upon NO activation. In synergy with the artificial allosteric effector BAY 41-2272 (a lead compound for drug design in cardiovascular treatment), sGC can also be activated by carbon monoxide (CO), but the structural basis for this synergistic effect are unknown. We recorded in the unusually broad time range from 1 ps to 1 s the dynamics of the interaction of CO binding to full length sGC, to the isolated sGC heme domain ß(1)(200) and to the homologous bacterial NO-sensor from Clostridium botulinum. By identifying all phases of CO binding in this full time range and characterizing how these phases are modified by BAY 41-2272, we show that this activator induces the same structural changes in both proteins. This result demonstrates that the BAY 41-2272 binding site resides in the ß(1)(200) sGC heme domain and is the same in sGC and in the NO-sensor from Clostridium botulinum.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium botulinum/metabolismo , Óxido Nítrico/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Guanilato Ciclase/metabolismo , Ligantes , Dados de Sequência Molecular , Óxido Nítrico/química , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos , Guanilil Ciclase Solúvel
13.
Nature ; 455(7211): 363-8, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18716621

RESUMO

The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic pi-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.


Assuntos
Evolução Molecular , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Catálise , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/genética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual/genética , Conformação Proteica
14.
J Inorg Biochem ; 100(12): 2024-33, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17084900

RESUMO

Genome sequencing has recently shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles of these proteins remain unclear. The interactions of a series of l-arginine (l-arg) analogs and iron ligands with two recombinant NOS-like proteins from Staphylococcus aureus (saNOS) and Bacillus anthracis (baNOS) have been studied by UV-visible spectroscopy. SaNOS and baNOS in their ferric native state, as well as their complexes with l-arg analogs and with various ligands, exhibit spectral characteristics highly similar to the corresponding complexes of heme-thiolate proteins such as cytochromes P450 and NOSs. However, saNOS greatly differs from baNOS at the level of three main properties: (i) native saNOS mainly exists under an hexacoordinated low-spin ferric state whereas native baNOS is mainly high-spin, (ii) the addition of tetrahydrobiopterin (H4B) or H4B analogs leads to an increase of the affinity of l-arg for saNOS but not for baNOS, and (iii) saNOS Fe(II), contrary to baNOS, binds relatively bulky ligands such as nitrosoalkanes and tert-butylisocyanide. Thus, saNOS exhibits properties very similar to those of the oxygenase domain of inducible NOS (iNOS(oxy)) not containing H4B, as expected for a NOSoxy-like protein that does not contain H4B. By contrast, the properties of baNOS which look like those of H4B-containing iNOS(oxy) are unexpected for a NOS-like protein not containing H4B. The origin of these surprising properties of baNOS remains to be determined.


Assuntos
Arginina/metabolismo , Bacillus anthracis/enzimologia , Ferro/metabolismo , Óxido Nítrico Sintase/metabolismo , Staphylococcus aureus/enzimologia , Ligantes , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
15.
Nitric Oxide ; 15(4): 312-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16690332

RESUMO

Some Gram-positive bacterial pathogens harbor a gene that encodes a protein (HNS, Heme domain of NO Synthase-like proteins) with striking sequence identity to the oxygenase domain of mammalian NO synthases (NOS). However, they lack the N-terminal and the Zn-cysteine motif participating to the stability of an active dimer in the mammalian isoforms. The unique properties of HNS make it an excellent model system for probing how the heme environment tunes NO dynamics and for comparing it to the endothelial NO synthase heme domain (eNOS(HD)) using ultrafast transient spectroscopy. NO rebinding in HNS from Staphylococcus aureus (SA-HNS) is faster than that measured for either Bacillus anthracis (BA-HNS) or for eNOS(HD) in both oxidized and reduced forms in the presence of arginine. To test whether these distinct rates arise from different energy barriers for NO recombination, we measured rebinding kinetics at several temperatures. Our data are consistent with different barriers for NO recombination in SA-HNS and BA-HNS and the presence of a second NO-binding site. The hypothesis that an additional NO-binding cavity is present in BA-HNS is also consistent with the effect of the NO concentration on its rebinding. The lack of the effect of NO concentration on the geminate rebinding in SA-HNS could be due to an isolated second site. We confirm the existence of a second NO site in the oxygenase domain of the reduced eNOS as previously hypothesized [A. Slama-Schwok, M. Négrerie, V. Berka, J.C. Lambry, A.L. Tsai, M.H. Vos, J.L. Martin, Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin? J. Biol. Chem. 277 (2002) 7581-7586]. This site requires the presence of arginine and BH(4); and we propose that NO dynamic and escape from eNOS is regulated by the active site H-bonding network connecting between the heme, the substrate, and cofactor.


Assuntos
Bacillus anthracis/enzimologia , Heme/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/enzimologia , Óxido Nítrico Sintase/isolamento & purificação , Ligação Proteica
16.
Science ; 306(5701): 1550-3, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15472039

RESUMO

Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Clostridium botulinum/química , Clostridium botulinum/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Aerobiose , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Evolução Biológica , Proteínas de Transporte/genética , Quimiotaxia , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , Clostridium botulinum/genética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Guanilato Ciclase , Heme/química , Heme/metabolismo , Hemeproteínas/genética , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Protoporfirinas/análise , Protoporfirinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Guanilil Ciclase Solúvel , Eletricidade Estática , Thermoanaerobacter/química
17.
J Mol Biol ; 315(5): 1167-77, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11827484

RESUMO

The activation of growth factor receptors induces phosphorylation of tyrosine residues in its C-terminal part, creating binding sites for SH2 domain-containing proteins. Grb2 is a protein that recruits Sos, the exchange factor for Ras. Recruitment of Sos allows for Ras activation and subsequent signal transmission. This promotes translocation of MAP kinases into the nucleus and activation of early transcription factors. Grb2, a 25 kDa protein, is composed of one SH2 domain surrounded by two SH3 domains. The SH2 domain of Grb2 binds to class II phosphotyrosyl peptides with the consensus sequence pYXNX. Thus, Grb2 is a good example of a bifunctional adaptor protein that brings proteins into close proximity, allowing signal transduction through proteins located in different compartments. To explore the interactions between Grb2 and phosphorylated ligands, we have solved the crystal structure of complexes between the Grb2-SH2 domain and peptides corresponding to Shc-derived sequences. Two structures are described: the Grb2-SH2 domain in complex with PSpYVNVQN at 1.5 A; and the Grb2-SH2 domain in complex with mAZ*-pY-(alphaMe)pY-N-NH2 pseudo-peptide, at 2 A. Both are compared to an unliganded SH2 structure determined at 2.7 A which, interestingly enough, forms a dimer through two swapping subdomains from two symmetry-related molecules. The nanomolar affinity of the mAZ-pY-(alphaMe)pY-N-NH2 pseudo-peptide for Grb2-SH2 is related to new interactions with non- conserved residues. The design of Grb2-SH2 domain inhibitors that prevent interaction with tyrosine kinase proteins or other adaptors like Shc or IRS1 should provide a means to interrupt the Ras signaling pathway. Newly synthesized pseudo-peptides exhibit nanomolar affinities for the Grb2-SH2 domain. It will then be possible to design new inhibitors with similar affinity and simpler chemical structures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/química , Proteínas/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Ligação Competitiva , Cristalografia por Raios X , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2 , Ligação de Hidrogênio , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Proteínas/genética , Proteínas Adaptadoras da Sinalização Shc , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA