Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011720

RESUMO

Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteína Duplacortina/metabolismo , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Substância Branca/fisiopatologia , Síndrome de Williams/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Síndrome de Williams/patologia
2.
Glia ; 69(1): 5-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589817

RESUMO

Myelin is the electrical insulator surrounding the neuronal axon that makes up the white matter (WM) of the brain. It helps increase axonal conduction velocity (CV) by inducing saltatory conduction. Damage to the myelin sheath and WM is associated with many neurological and psychiatric disorders. Decreasing myelin deficits, and thus improving axonal conduction, has the potential to serve as a therapeutic mechanism for reducing the severity of some of these disorders. Myelin deficits have been previously linked to abnormalities in social behavior, suggesting an interplay between brain connectivity and sociability. This review focuses on Williams syndrome (WS), a genetic disorder characterized by neurocognitive characteristics and motor abnormalities, mainly known for its hypersociability characteristic. We discuss fundamental aspects of WM in WS and how its alterations can affect motor abilities and social behavior. Overall, findings regarding changes in myelin genes and alterations in WM structure in WS suggest new targets for drug therapy aimed at improving conduction properties and altering brain-activity synchronization in this disorder.


Assuntos
Transtornos Motores , Substância Branca , Síndrome de Williams , Axônios , Humanos , Transtornos Motores/etiologia , Bainha de Mielina , Síndrome de Williams/complicações
4.
Nat Neurosci ; 22(5): 700-708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011227

RESUMO

Williams syndrome (WS), caused by a heterozygous microdeletion on chromosome 7q11.23, is a neurodevelopmental disorder characterized by hypersociability and neurocognitive abnormalities. Of the deleted genes, general transcription factor IIi (Gtf2i) has been linked to hypersociability in WS, although the underlying mechanisms are poorly understood. We show that selective deletion of Gtf2i in the excitatory neurons of the forebrain caused neuroanatomical defects, fine motor deficits, increased sociability and anxiety. Unexpectedly, 70% of the genes with significantly decreased messenger RNA levels in the mutant mouse cortex are involved in myelination, and mutant mice had reduced mature oligodendrocyte cell numbers, reduced myelin thickness and impaired axonal conductivity. Restoring myelination properties with clemastine or increasing axonal conductivity rescued the behavioral deficits. The frontal cortex from patients with WS similarly showed reduced myelin thickness, mature oligodendrocyte cell numbers and mRNA levels of myelination-related genes. Our study provides molecular and cellular evidence for myelination deficits in WS linked to neuronal deletion of Gtf2i.


Assuntos
Comportamento Animal , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Remielinização/efeitos dos fármacos , Fatores de Transcrição TFII/genética , Síndrome de Williams/genética , Animais , Axônios/efeitos dos fármacos , Clemastina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Destreza Motora , Bainha de Mielina/ultraestrutura , Comportamento Social , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA