Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Parasitol ; 124: 57-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754927

RESUMO

For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.


Assuntos
Vetores Artrópodes , Animais , Vetores Artrópodes/fisiologia , Humanos , Artrópodes/fisiologia , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/prevenção & controle , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA