RESUMO
Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.
Assuntos
Ácido Oxaloacético , Rodófitas , Citrato (si)-Sintase/química , Acetilcoenzima A , OxaloacetatosRESUMO
A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5-10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.