Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202404155, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453647

RESUMO

Metal-organic cages (MOCs), which are formed via coordination-driven assembly, are being extensively developed for various applications owing to the utility of their accessible molecular-sized cavity. While MOC structures are uniquely and precisely predetermined by the metal coordination number and ligand configuration, tailoring MOCs to further modulate the size, shape, and chemical environment of the cavities has become intensively studied for a more efficient and adaptive molecular binding. Herein, we report self-expanding MOCs that exhibit remarkable structural variations in cage size and flexibility while maintaining their topology. A cyclic ligand with an oligomeric chain tethering the two benzene rings of stilbene was designed and mixed with RhII ions to obtain the parent MOCs. These MOCs were successfully transformed into expanded MOCs via the selective cleavage of the double bond in stilbene. The expanded MOCs could effectively trap multidentate N-donor molecules in their enlarged cavity, in contrast to the original MOCs with a narrow cavity. As the direct synthesis of expanded MOCs is impractical because of the entropically disfavored structures, self-expansion using ring-openable ligands is a promising approach that allows precision engineering and the production of functional MOCs that would otherwise be inaccessible.

2.
ACS Macro Lett ; 12(4): 415-420, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36916794

RESUMO

In this study, polyacrylonitrile (PAN) nanosheets with unimolecular thickness were successfully synthesized by cross-linking polymerization in the 2D nanospaces of a metal-organic framework. In contrast to 1D and 3D analogues, crystallization could be inhibited by the topological constraint of the ultrathin 2D network structure, allowing for an efficient thermal transformation reaction of PAN. The amorphous nature of the PAN nanosheets led to an increase in the access of oxygen molecules to the polymer chains, facilitating the thermal dehydroaromatization reactions to yield a ladder polymer structure with a highly extended conjugated system. Notably, further carbonization of this ladder polymer afforded graphitic carbon with a highly ordered structure because of the well-defined precursor structure.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 374(3): 235-48, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17089097

RESUMO

The present study aimed to investigate the effects of olmesartan, an antagonist for angiotensin II receptor type 1(AT1), on the activation of extracellular signal-regulated kinases (ERK)1/2, tissue remodeling, and pro-inflammatory signals in the right ventricle and lung of mice during the early phase of hypobaric hypoxia. Phosphorylation of ERK1/2 in both tissue types in response to hypoxia peaked at 1-3 days, and declined rapidly in the right ventricle, whereas in the lung it was sustained for at least 8 days. Upregulation of angiotensinogen mRNA was observed in the hypoxic lung at 4-9 days, but not in the hypoxic right ventricle and pulmonary artery. Olmesartan inhibited the hypoxia-induced phosphorylation of ERK1/2 in the lung, but not in the right ventricle. Neither right ventricular hypertrophy nor the thickening of the intrapulmonary arterial wall was ameliorated by olmesartan. However, this drug inhibited the expression of the mRNA for angiotensinogen and several pro-inflammatory factors, including interleukin-6 and inducible nitric oxide synthase in the hypoxic lung. These results suggest that olmesartan blocks a potential positive feedback loop of the angiotensin II-AT1 receptor system, which may lead to attenuate pro-inflammatory signals in the mouse lung, that are associated with hypoxic pulmonary hypertension, without inducing any appreciable effects on the compensatory cardiopulmonary hypertrophy at an early phase of exposure to a hypobaric hypoxic environment.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Imidazóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Tetrazóis/farmacologia , Angiotensinogênio/efeitos dos fármacos , Angiotensinogênio/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Hipóxia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Olmesartana Medoxomila , Fosforilação/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , RNA Mensageiro/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA