Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biology (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785783

RESUMO

Neurological commitment is a neglected manifestation of Chagas disease (CD). Meningoencephalitis mainly affects children and immunosuppressed patients, while stroke can occur with or without cardiac compromise. One of the possible causes of stroke development is microvascular commitment. Our group previously described that experimental Trypanossoma cruzi acute infection leads to cerebral microvasculopathy. This condition is characterized by decreased capillary density, increased leukocyte rolling and adhesion, and endothelial dysfunction. CD was discovered 114 years ago, and until today, only two drugs have been available for clinical treatment: benznidazole and nifurtimox. Both present a high cure rate for the acute phase (80%) and small cure rate for the chronic phase (20%). In addition, the high occurrence of side-effects, without proper medical follow-up, can result in treatment abandonment. Therefore, the search for new therapeutic schemes is necessary. Statins are drugs already used in the clinic that have several pleiotropic effects including endothelial function improvement, anti-inflammatory action, as well as trypanocidal effects, making them a potential alternative treatment for brain microvasculopathy in CD. Here, we investigate the effect of lovastatin (LOV) on brain microvasculopathy and inflammatory parameters. Swiss Webster mice were intraperitoneally inoculated with the Y strain of T. cruzi. Treatment with lovastatin (20 mg/kg/day) was initiated 24 h after the infection and continued for 14 consecutive days. We observed that LOV treatment did not affect parasitemia, brain microcirculation alterations, or the reduction in cerebral blood flow caused by T. cruzi infection. Also, LOV did not prevent the increased number of CD3+ cells and eNOS levels in the T. cruzi-infected brain. No alterations were observed on VCAM-1 and MCP-1 expressions, neither caused by infection nor LOV treatment. However, LOV prevented the increase in F4/80+ cells and ICAM-1 levels in the brain caused by acute infection with T. cruzi. These results suggest an anti-inflammatory activity of LOV, but more studies are needed to elucidate the role of LOV in CD acute infection.

2.
Mem Inst Oswaldo Cruz ; 118: e230115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126526

RESUMO

BACKGROUND: A positive Trypanosoma cruzi polymerase chain reaction (PCR) is associated with a worse prognosis in patients with chronic Chagas disease (CD). OBJECTIVES: To study the association of clinical, electrocardiographic, and echocardiographic characteristics and biomarker blood levels with positive T. cruzi PCR in chronic CD. METHODS: This is a single-centre observational cross-sectional study. Positive T. cruzi PCR association with clinical, electrocardiographic, and echocardiographic characteristics, and biomarker blood levels were studied by logistic regression analysis. p values < 0.05 were considered significant. FINDINGS: Among 333 patients with chronic CD (56.4% men; 62 ± 10 years), T. cruzi PCR was positive in 41.1%. Stepwise multivariate logistic regression showed an independent association between positive T. cruzi PCR and diabetes mellitus {odds ratio (OR) 0.53 [95% confidence interval (CI) 0.30-0.93]; p = 0.03}, right bundle branch block [OR 1.78 (95% CI 1.09-2.89); p = 0.02], and history of trypanocidal treatment [OR 0.13 (95% CI 0.04-0.38); p = 0.0002]. Among patients with a history of trypanocidal treatment (n = 39), only four (10%) patients had a positive T. cruzi PCR. MAIN CONCLUSIONS: Among several studied parameters, only diabetes mellitus, right bundle branch block, and history of trypanocidal treatment showed an independent association with positive T. cruzi PCR. History of trypanocidal treatment was a strong protective factor against a positive T. cruzi PCR.


Assuntos
Doença de Chagas , Diabetes Mellitus , Tripanossomicidas , Trypanosoma cruzi , Feminino , Humanos , Masculino , Biomarcadores , Bloqueio de Ramo/complicações , Bloqueio de Ramo/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Doença Crônica , Estudos Transversais , Diabetes Mellitus/tratamento farmacológico , Reação em Cadeia da Polimerase , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/genética , Pessoa de Meia-Idade , Idoso
3.
Biology (Basel) ; 12(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998013

RESUMO

Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents and therapies that control cardiac alterations. However, there is no treatment for the progressive cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis. Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also characterized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were performed. We found that bevacizumab significantly increased survival, reduced inflammation, improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopathy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.

4.
Mem. Inst. Oswaldo Cruz ; 118: e230115, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1529020

RESUMO

BACKGROUND A positive Trypanosoma cruzi polymerase chain reaction (PCR) is associated with a worse prognosis in patients with chronic Chagas disease (CD). OBJECTIVES To study the association of clinical, electrocardiographic, and echocardiographic characteristics and biomarker blood levels with positive T. cruzi PCR in chronic CD. METHODS This is a single-centre observational cross-sectional study. Positive T. cruzi PCR association with clinical, electrocardiographic, and echocardiographic characteristics, and biomarker blood levels were studied by logistic regression analysis. p values < 0.05 were considered significant. FINDINGS Among 333 patients with chronic CD (56.4% men; 62 ± 10 years), T. cruzi PCR was positive in 41.1%. Stepwise multivariate logistic regression showed an independent association between positive T. cruzi PCR and diabetes mellitus {odds ratio (OR) 0.53 [95% confidence interval (CI) 0.30-0.93]; p = 0.03}, right bundle branch block [OR 1.78 (95% CI 1.09-2.89); p = 0.02], and history of trypanocidal treatment [OR 0.13 (95% CI 0.04-0.38); p = 0.0002]. Among patients with a history of trypanocidal treatment (n = 39), only four (10%) patients had a positive T. cruzi PCR. MAIN CONCLUSIONS Among several studied parameters, only diabetes mellitus, right bundle branch block, and history of trypanocidal treatment showed an independent association with positive T. cruzi PCR. History of trypanocidal treatment was a strong protective factor against a positive T. cruzi PCR.

5.
Sci Rep ; 12(1): 21048, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473897

RESUMO

Central nervous system alterations was described in Chagas disease in both human and experimental models, leading to meningoencephalitis, stroke and cognitive impairment. Recently, our group demonstrated that acute infection by Trypanossoma cruzi leads to cerebral microvasculophaty in mice with endothelial dysfunction, capillary rarefaction, increased rolling and leukocyte adhesion. Only benznidazole and nifurtimox are available for clinical treatment, they have an efficiency of 80% in the acute phase and less than 20% in chronic phase. However, the effect of these drugs on brain microcirculation has not yet been evaluated. We hypothesized that early treatment with benznidazole could protect brain microcirculation during acute experimental Chagas disease. Swiss Webster mice were inoculated with 104 trypomastigotes forms of T. cruzi, and after 24 h they were treated with 50 or 100 mg/kg/day of benznidazole for 14 consecutive days. In untreated infected mice, we observed cerebral microvascular rarefaction, increase in leukocyte rolling and adhesion, reduced cerebral blood flow, and increased CD3+ and F4-80+ cells in brain tissue. Early treatment with benznidazole at 100 mg/kg/day and 50 mg/kg/day prevented the occurrence of the alterations mentioned. Here, we show that BZ is able to protect the microcirculation and reduced brain inflammation in acute experimental Chagas disease.


Assuntos
Doença de Chagas , Animais , Humanos , Camundongos , Doença de Chagas/tratamento farmacológico
6.
Mem Inst Oswaldo Cruz ; 117: e220005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417626

RESUMO

BACKGROUND: Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES: The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS: The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS: In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS: We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.


Assuntos
Doença de Chagas , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular , Doença de Chagas/metabolismo , Coração , Miocárdio/patologia
7.
Mem. Inst. Oswaldo Cruz ; 117: e220005, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1406002

RESUMO

BACKGROUND Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.

8.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408226

RESUMO

Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Fibroblastos/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvatos/metabolismo , Toxoplasma/efeitos dos fármacos , Ácido Dicloroacético/química , Fibroblastos/parasitologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Oxirredutases , Toxoplasmose/tratamento farmacológico
9.
Mol Biochem Parasitol ; 238: 111283, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32564978

RESUMO

Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-ß pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-ß and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Fibrose Endomiocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/parasitologia , Fibrose Endomiocárdica/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feto , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Laminina/genética , Laminina/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Carga Parasitária , Cultura Primária de Células , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Inibidor Tecidual 4 de Metaloproteinase
10.
PLoS Negl Trop Dis ; 8(7): e2998, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010691

RESUMO

Cardiomyopathy is the main clinical form of Chagas disease (CD); however, cerebral manifestations, such as meningoencephalitis, ischemic stroke and cognitive impairment, can also occur. The aim of the present study was to investigate functional microvascular alterations and oxidative stress in the brain of mice in acute CD. Acute CD was induced in Swiss Webster mice (SWM) with the Y strain of Trypanosoma cruzi (T. cruzi). Cerebral functional capillary density (the number of spontaneously perfused capillaries), leukocyte rolling and adhesion and the microvascular endothelial-dependent response were analyzed over a period of fifteen days using intravital video-microscopy. We also evaluated cerebral oxidative stress with the thiobarbituric acid reactive species TBARS method. Compared with the non-infected group, acute CD significantly induced cerebral functional microvascular alterations, including (i) functional capillary rarefaction, (ii) increased leukocyte rolling and adhesion, (iii) the formation of microvascular platelet-leukocyte aggregates, and (iv) alteration of the endothelial response to acetylcholine. Moreover, cerebral oxidative stress increased in infected animals. We concluded that acute CD in mice induced cerebral microvasculopathy, characterized by a reduced incidence of perfused capillaries, a high number of microvascular platelet-leukocyte aggregates, a marked increase in leukocyte-endothelium interactions and brain arteriolar endothelial dysfunction associated with oxidative stress. These results suggest the involvement of cerebral microcirculation alterations in the neurological manifestations of CD.


Assuntos
Circulação Cerebrovascular , Doença de Chagas/fisiopatologia , Microcirculação , Doenças Vasculares , Doença Aguda , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA