Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 308, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467823

RESUMO

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents. Native mass spectrometry demonstrates that up to three PF4 tetramers can be assembled on a heparin chain, consistent with the molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/efeitos adversos , Complexo Antígeno-Anticorpo , Fator Plaquetário 4/metabolismo , Trombocitopenia/induzido quimicamente , Plaquetas/metabolismo , Fatores Imunológicos
2.
MAbs ; 15(1): 2273449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930310

RESUMO

Bispecific antibodies represent an increasingly large fraction of biologics in therapeutic development due to their expanded scope in functional capabilities. Asymmetric monovalent bispecific IgGs (bsIgGs) have the additional advantage of maintaining a native antibody-like structure, which can provide favorable pharmacology and pharmacokinetic profiles. The production of correctly assembled asymmetric monovalent bsIgGs, however, is a complex engineering endeavor due to the propensity for non-cognate heavy and light chains to mis-pair. Previously, we introduced the DuetMab platform as a general solution for the production of bsIgGs, which utilizes an engineered interchain disulfide bond in one of the CH1-CL domains to promote orthogonal chain pairing between heavy and light chains. While highly effective in promoting cognate heavy and light chain pairing, residual chain mispairing could be detected for specific combinations of Fv pairs. Here, we present enhancements to the DuetMab design that improve chain pairing and production through the introduction of novel electrostatic steering mutations at the CH1-CL interface with lambda light chains (CH1-Cλ). These mutations work together with previously established charge-pair mutations at the CH1-CL interface with kappa light chains (CH1-Cκ) and Fab disulfide engineering to promote cognate heavy and light chain pairing and enable the reliable production of bsIgGs. Importantly, these enhanced DuetMabs do not require engineering of the variable domains and are robust when applied to a panel of bsIgGs with diverse Fv sequences. We present a comprehensive biochemical, biophysical, and functional characterization of the resulting DuetMabs to demonstrate compatibility with industrial production benchmarks. Overall, this enhanced DuetMab platform substantially streamlines process development of these disruptive biotherapeutics.


Assuntos
Anticorpos Biespecíficos , Anticorpos Biespecíficos/genética , Eletricidade Estática , Dissulfetos , Mutação , Imunoglobulina G/genética
3.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798284

RESUMO

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin, which trigger platelet activation and a hypercoagulable state. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents (especially heparin). We use native mass spectrometry to characterize small immune complexes formed by PF4, heparin and monoclonal HIT-specific antibodies. Up to three PF4 tetramers can be assembled on a heparin chain, consistent with the results of molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.

4.
Int J Mass Spectrom ; 4632021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33692650

RESUMO

Neutrophil elastase is a serine protease released by neutrophils, and its dysregulation has been associated with a variety of debilitating pathologies, most notably cystic fibrosis. This protein is also a prominent component of the so-called neutrophil extracellular traps (NETs), whose formation is a part of the innate immunity response to invading pathogens, but also contributes to a variety of pathologies ranging from autoimmune disorders and inflammation to cancer to thrombotic complications in COVID-19. Retention of neutrophil elastase within NETs is provided by ejected DNA chains, although this protein is also capable of interacting with a range of other endogenous polyanions, such as heparin and heparan sulfate. In this work, we evaluate the feasibility of using native mass spectrometry (MS) as a means of studying interactions of neutrophil elastase with heparin oligomers ranging from structurally homogeneous synthetic pentasaccharide fondaparinux to relatively long (up to twenty saccharide units) and structurally heterogeneous chains produced by partial depolymerization of heparin. The presence of heterogeneous glycan chains on neutrophil elastase and the structural heterogeneity of heparin oligomers render the use of standard MS to study their complexes impractical. However, supplementing MS with limited charge reduction in the gas phase allows meaningful data to be extracted from MS measurements. In contrast to earlier molecular modeling studies where a single heparin-binding site was identified, our work reveals the existence of multiple binding sites, with a single protein molecule being able to accommodate up to three decasaccharides. The measurements also reveal the ability of even relatively short heparin oligomers to bridge two protein molecules, suggesting that characterization of these complexes using native MS can shed light on the structural properties of NETs. Lastly, the use of MS allows the binding preferences of heparin oligomers to neutrophil elastase to be studied with respect to specific structural properties of heparin, such as the level of sulfation (i.e., charge density). All experimental measurements are carried out in parallel with molecular dynamics simulations of the protein/heparin oligomer systems, which are in remarkable agreement with the experimental data and highlight the role of electrostatic interactions as dominant forces governing the formation of these complexes.

5.
Anal Chem ; 93(7): 3337-3342, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566581

RESUMO

Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.


Assuntos
Hemoglobinas , Espectrometria de Massas por Ionização por Electrospray , Íons , Solventes
6.
Anal Chem ; 92(11): 7565-7573, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347711

RESUMO

Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.


Assuntos
Antitrombinas/química , Heparina/análise , Polissacarídeo-Liases/química , Antitrombinas/metabolismo , Bacteroides/enzimologia , Cromatografia em Gel , Heparina/metabolismo , Humanos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Polissacarídeo-Liases/metabolismo , Impressão Tridimensional , Soluções
7.
Biophys J ; 119(7): 1371-1379, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32348723

RESUMO

Association of platelet factor 4 (PF4) with heparin is a first step in formation of aggregates implicated in the development of heparin-induced thrombocytopenia (HIT), a potentially fatal immune disorder affecting 1-5% of patients receiving heparin. Despite being a critically important element in HIT etiology, relatively little is known about the specific molecular mechanism of PF4-heparin interactions. This work uses native mass spectrometry to investigate PF4 interactions with relatively short heparin chains (up to decasaccharides). The protein is shown to be remarkably unstable at physiological ionic strength in the absence of polyanions; only monomeric species are observed, and the extent of multiple charging of corresponding ions indicates a partial loss of conformational integrity. The tetramer signal remains at or below the detection threshold in the mass spectra until the solution's ionic strength is elevated well above the physiological level, highlighting the destabilizing role played by electrostatic interactions vis-à-vis quaternary structure of this high-pI protein. The tetramer assembly is dramatically facilitated by relatively short polyanions (synthetic heparin-mimetic pentasaccharide), with the majority of the protein molecules existing in the tetrameric state even at physiological ionic strength. Each tetramer accommodates up to six pentasaccharides, with at least three such ligands required to guarantee the higher-order structure integrity. Similar results are obtained for PF4 association with longer and structurally heterogeneous heparin oligomers (decamers). These longer polyanions can also induce PF4 dimer assembly when bound to the protein in relatively low numbers, lending support to a model of PF4/heparin interaction in which the latter wraps around the protein, making contacts with multiple subunits. Taken together, these results provide a more nuanced picture of PF4-glycosaminoglycan interactions leading to complex formation. This work also advocates for a greater utilization of native mass spectrometry in elucidating molecular mechanisms underlying HIT, as well as other physiological processes driven by electrostatic interactions.


Assuntos
Fator Plaquetário 4 , Trombocitopenia , Heparina , Humanos
8.
Biochemistry ; 57(32): 4880-4890, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29999301

RESUMO

Factor Xa (fXa) inhibition by antithrombin (AT) enabled by heparin or heparan sulfate is critical for controlling blood coagulation. AT activation by heparin has been investigated extensively, while interaction of heparin with trapped AT/fXa intermediates has received relatively little attention. We use native electrospray ionization mass spectrometry to study the role of heparin chains of varying length [hexa-, octa-, deca-, and eicosasaccharides (dp6, dp8, dp10, and dp20, respectively)] in AT/fXa complex assembly. Despite being critical promoters of AT/Xa binding, shorter heparin chains are excluded from the final products (trapped intermediates). However, replacement of short heparin segments with dp20 gives rise to a prominent ionic signal of ternary complexes. These species are also observed when the trapped intermediate is initially prepared in the presence of a short oligoheparin (dp6), followed by addition of a longer heparin chain (dp20), indicating that binding of heparin to AT/fXa complexes takes place after the inhibition event. The importance of the heparin chain length for its ability to associate with the trapped intermediate suggests that the binding likely occurs in a bidentate fashion (where two distinct segments of oligoheparin make contacts with the protein components, while the part of the chain separating these two segments is extended into solution to minimize electrostatic repulsion). This model is corroborated by both molecular dynamics simulations with an explicit solvent and ion mobility measurements in the gas phase. The observed post-inhibition binding of heparin to the trapped AT/fXa intermediates hints at the likely role played by heparan sulfate in their catabolism.


Assuntos
Antitrombinas/química , Fator Xa/química , Glicosaminoglicanos/química , Coagulação Sanguínea , Cromatografia em Gel , Heparina/química , Humanos , Espectrometria de Massas
9.
J Agric Food Chem ; 66(22): 5691-5698, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758985

RESUMO

Bovine α-lactalbumin (α-LA) is one of major food allergens in cow's milk. The present work sought to research the effects of ultrasonic pretreatment combined with dry heating-induced glycation between α-LA and galactose on the immunoglobulin E (IgE)/immunoglobulin G (IgG)-binding ability and glycation extent of α-LA, determined by inhibition enzyme-linked immunosorbent assay and high-resolution mass spectrometry, respectively. The IgE/IgG-binding ability of glycated α-LA was significantly decreased as a result of ultrasonic pretreatment, while the average molecular weight, incorporation ratio (IR) value, location and number of glycation sites, and degree of substitution per peptide (DSP) value were elevated. When the mixtures of α-LA and galactose were pretreated by ultrasonication at 150 W/cm2, glycated α-LA possesses seven glycation sites, the highest IR and DSP values, and the lowest IgE/IgG-binding ability. Therefore, the decrease in the IgE/IgG-binding ability of α-LA depends upon not only the shielding effect of the linear epitope found to be caused by the glycation of K13, K16, K58, K93, and K98 sites but also the intensified glycation extent, which reflected in the increase of the IR value, the number of glycation sites, and the DSP value. Moreover, allergenic proteins and monosaccharides pretreated by ultrasonication and then followed by dry-state glycation were revealed as a promising way of achieving lower allergenicity of proteins in food processing.


Assuntos
Imunoglobulina E/química , Imunoglobulina G/química , Lactalbumina/química , Animais , Glicosilação , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Lactalbumina/imunologia , Espectrometria de Massas , Leite/química , Leite/imunologia , Ultrassom
10.
Food Funct ; 9(1): 417-425, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29220053

RESUMO

Bovine ß-lactoglobulin (ß-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of ß-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated ß-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm-1 for 60 µs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of ß-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of ß-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of ß-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for ß-Lg desensitization.


Assuntos
Imunoglobulina E/química , Imunoglobulina G/química , Lactoglobulinas/química , Espectrometria de Massas/métodos , Alérgenos/química , Alérgenos/imunologia , Animais , Bovinos , Ciclotrons , Glicosilação , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Lactoglobulinas/imunologia , Espectrometria de Massas/instrumentação , Leite/química
11.
J Agric Food Chem ; 65(36): 8018-8027, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28800703

RESUMO

Bovine ß-lactoglobulin (ß-Lg) is one of major allergens in cow's milk. Previous study showed that ultrasound treatment induced the conformational changes of ß-Lg and promoted the glycation in aqueous solutions, which is, however, less efficient compared with dry-state. In this work, the effect of ultrasound pretreatment combined with dry-state glycation on the IgG and IgE binding of ß-Lg was studied. Dry-state glycation with mannose after ultrasound pretreatment at 0-600 W significantly reduced the IgG and IgE binding of ß-Lg, with the lowest values observed at 400 W. The decrease in the IgG and IgE binding of ß-Lg was attributed to the increase in glycation extent and the changes of secondary and tertiary structure, which reflected in the increase of UV absorbance, α-helix and ß-sheet contents, as well as the decrease of intrinsic fluorescence intensity, surface hydrophobicity, ß-turn, and random coil contents. Moreover, ultrasound pretreatment promoted the reduction of IgG and IgE binding abilities by improving glycation, reflecting in the increase of the glycation sites and the degree of substitution per peptide (DSP) value determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Ultrasound pretreatment at 400 W showed the most significantly enhanced glycation extent. Besides, the results suggested FTICR-MS could provide insights into the glycation at molecular level, which was conducive to the understanding of the mechanism of the reduction in the IgG and IgE binding of ß-Lg. Therefore, ultrasound pretreatment combined with dry-state glycation may be a promising method for ß-Lg hyposensitization.


Assuntos
Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Alérgenos/química , Alérgenos/metabolismo , Animais , Bovinos , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina E/química , Imunoglobulina G/química , Espectrometria de Massas , Leite/química , Ligação Proteica , Análise Espectral , Ondas Ultrassônicas
12.
Chem Commun (Camb) ; 51(92): 16518-21, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26417952

RESUMO

We report that QATPE, an aggregation-induced emission-active tetraphenylethene dye, can be used as a non-sequence-specific ssDNA probe for real-time monitoring of all rolling circle amplification (RCA) reactions, thus making RCA more suitable for biosensing applications.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA