Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(7): 6559-6570, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844568

RESUMO

Hydrometallurgy technology can directly deal with low grade and complex materials, improve the comprehensive utilization rate of resources, and effectively adapt to the demand of low carbon and cleaner production. A series of cascade continuous stirred tank reactors are usually applied in the gold leaching industrial process. The equations of leaching process mechanism model are mainly composed of gold conservation, cyanide ion conservation, and kinetic reaction rate equations. The derivation of the theoretical model involves many unknown parameters and some ideal assumptions, which leads to difficulty and imprecision in establishing the accurate mechanism model of the leaching process. Imprecise mechanism models limit the application of model-based control algorithms in the leaching process. Due to the constraints and limitations of the input variables in the cascade leaching process, a novel model-free adaptive control algorithm based on compact form dynamic linearization with integration (ICFDL-MFAC) control factor is first constructed. The constraints between input variables is realized by setting the initial value of the input to the pseudo-gradient and the weight of the integral coefficient. The proposed pure data-driven ICFDL-MFAC algorithm has anti-integral saturation ability and can achieve faster control rate and higher control precision. This control strategy can effectively improve the utilization efficiency of sodium cyanide and reduce environmental pollution. The consistent stability of the proposed control algorithm is also analyzed and proved. Compared with the existing model-free control algorithms, the merit and practicability of the control algorithm are verified by the practical leaching industrial process test. The proposed model-free control strategy has advantages of strong adaptive ability, robustness, and practicability. The MFAC algorithm can also be easily applied to control the multi-input multi-output of other industrial processes.

2.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081059

RESUMO

Elevator car vibration signals are important information to monitor and diagnose the operating status of elevators, but during the process of vibration signals acquisition, vibration signals are always inevitably disturbed by noise, which affects further research. Therefore, aiming at the vibration signal with noise, we propose a new vibration signal denoising method on the basis of complementary ensemble empirical mode decomposition (CEEMD) and bilateral filtering. Firstly, the collected original vibration signals are decomposed by the CEEMD into several inherent mode functions. Then, the false components are removed by determining the correlation coefficients of mode components, and then the noise-dominate components are denoised by bilateral filtering. Finally, the processed inherent mode functions are reconstructed to require the denoised signal. We test the method through simulation and practical application. The results indicate that the proposed method can efficaciously reduce the noise in the vibration signal of an elevator car.


Assuntos
Elevadores e Escadas Rolantes , Processamento de Sinais Assistido por Computador , Algoritmos , Automóveis , Razão Sinal-Ruído , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA