Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Kaohsiung J Med Sci ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963317

RESUMO

An increasing number of elderly individuals are experiencing postoperative cognitive dysfunction (POCD) problems after undergoing hip replacement surgery, with gut microbiota metabolites playing a role in its pathogenesis. Among these, the specific effects of trimethylamine N-oxide (TMAO) on POCD are still unclear. This study aimed to explore the role of TMAO on cognitive dysfunction and underlying mechanisms in mice. The POCD model was created through femoral fracture surgery in elderly mice, followed by cognitive function assessments using the Morris Water Maze and Novel Object Recognition tests. The gut microbiota depletion and fecal microbiota transplantation were performed to examine the relationship between TMAO levels and cognitive outcomes. The effects of TMAO treatment on cognitive dysfunction, microglial activation, and inflammatory cytokine levels in the brain were also evaluated, with additional assessment of the role of microglial ablation in reducing TMAO-induced cognitive impairment. Elevated TMAO levels were found to be associated with cognitive decline in mice following femoral fracture surgery, with gut microbiota depletion mitigating both TMAO elevation and cognitive dysfunction. In contrast, fecal microbiota transplantation from postoperative mice resulted in accelerated cognitive dysfunction and TMAO accumulation in germ-free mice. Furthermore, TMAO treatment worsened cognitive deficits, neuroinflammation, and promoted microglial activation, which were reversed through the ablation of microglia. TMAO exacerbates cognitive dysfunction and neuroinflammation in POCD mice, with microglial activation playing a crucial role in this process. Our findings may provide new therapeutic strategies for managing TMAO-related POCD and improving the quality of life for elderly patients.

2.
J Colloid Interface Sci ; 673: 797-806, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906001

RESUMO

In response to the growing demand for clean, green, and sustainable energy sources, the development of cost-effective and durable high-activity overall water splitting electrocatalysts is urgently needed. In this study, the heterogeneous structure formed by the combination of FeCoNiP and FeNi-LDH was homogeneously dispersed onto CuO nanowires generated by in-situ oxidation of copper foam as a substrate using an electrodeposition method. This multilevel structure exhibits excellent bifunctional properties as an electrode material in alkaline solutions, for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) only 206 mV and 147 mV overpotentials are needed to achieve a current density of 100 mA cm-2 respectively. Full water electrolysis is thus enabled to take place at such a low cell voltage as 1.64 V to reach the current density of 100 mA cm-2, which exhibits a long-term stability of 30 h. These improved electrocatalytic performances stem from the construction of multilevel structures. The X-ray photoelectron spectroscopy suggests that strong electron transfer occurs between heterogeneous structures, thus facilitating the OER and HER process. The dispersion of CuO nanowires not only increases the electrochemically active surface areas but also improves the overall hydrophilic and aerophobic properties. This work highlights the positive effect of multilevel structure in the design of more efficient electrocatalysts and provides a reference for the preparation of other low-cost, high-activity bifunctional electrocatalysts.

3.
Nucleic Acids Res ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917331

RESUMO

Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli. We designed a novel structure-switching aptamer-peptide conjugate as a hetero modulator for split GFP in response to ATP. By conjugating two peptides (S10/11) derived from the tripartite split-GFP to ATP aptamer, we achieved GFP reassembly using only ATP as a trigger molecule. The response to ATP at ≥4 mM concentrations indicated that it can be applied to respond to intracellular ATP in live cells. Furthermore, our hetero-modulator exhibited high and long-term stability, with a half-life of approximately four days in a serum stability assay, demonstrating resistance to nuclease degradation. We validated that our aptamer-modulator split GFP was successfully reconstituted in the cell in response to intracellular ATP levels. Our aptamer-modulated split GFP platform can be utilized to monitor a wide range of intracellular metabolites by replacing the aptamer sequence.

4.
J Environ Manage ; 358: 120911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631164

RESUMO

Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.


Assuntos
Abastecimento de Água , Qualidade da Água , Purificação da Água/métodos , Substâncias Húmicas/análise , Água Potável/química , Água Potável/análise , Carbono/análise
5.
Biomaterials ; 308: 122550, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581762

RESUMO

Immune checkpoint blockade therapy represented by programmed cell death ligand 1 (PD-L1) inhibitor for advanced renal carcinoma with an objective response rate (ORR) in patients is less than 20%. It is attributed to abundant tumoral vasculature with abnormal structure limiting effector T cell infiltration and drug penetration. We propose a bispecific fibrous glue (BFG) to regulate tumor immune and vascular microenvironments simultaneously. The bispecific precursor glue peptide-1 (pre-GP1) can penetrate tumor tissue deeply and self-assemble into BFG in the presence of neuropilin-1 (NRP-1) and PD-L1. The resultant fibrous glue is capable of normalizing tumoral vasculature as well as restricting immune escape. The pre-GP1 retains a 6-fold higher penetration depth than that of antibody in the multicellular spheroids (MCSs) model. It also shows remarkable tumor growth inhibition (TGI) from 19% to 61% in a murine advanced large tumor model compared to the clinical combination therapy. In addition, in the orthotopic renal tumor preclinical model, the lung metastatic nodules are reduced by 64% compared to the clinically used combination. This pre-GP1 provides a promising strategy to control the progression and metastasis of advanced renal carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/terapia , Neoplasias Renais/imunologia , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo
6.
J Sci Food Agric ; 104(10): 5973-5981, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38436499

RESUMO

BACKGROUND: Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS: High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 µg kg-1, which was 2.8 times higher than that of the control group. CONCLUSION: The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.


Assuntos
Bebidas Alcoólicas , Fermentação , Aromatizantes , Paladar , Leveduras , Aromatizantes/metabolismo , Aromatizantes/química , Leveduras/metabolismo , Leveduras/classificação , Leveduras/genética , Bebidas Alcoólicas/análise , Bebidas Alcoólicas/microbiologia , China , Cromatografia Gasosa-Espectrometria de Massas , Grão Comestível/química , Grão Comestível/microbiologia , Grão Comestível/metabolismo , Etanol/metabolismo , Etanol/análise
7.
Sci Total Environ ; 926: 171963, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537835

RESUMO

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Óxido Ferroso-Férrico , Rios , Ecossistema , Compostos Férricos , Desnitrificação , Ferro , Nitrogênio , Carbono , Oxirredução
8.
J Am Chem Soc ; 146(12): 7963-7970, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483110

RESUMO

Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates. In the presence of dibutyl phosphate as an initiator and triflic acid as a catalyst, precision cellulose with well-controlled molecular weights, defined chain-end groups, and excellent regio- and stereospecificity was readily prepared. We further demonstrated the utility of this method through the synthesis of precision native d-cellulose and rare precision l-cellulose.


Assuntos
Celulose , Glucose , Celulose/química , Polimerização , Glucose/química , Polissacarídeos , Cátions
9.
J Am Chem Soc ; 146(8): 5056-5062, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345300

RESUMO

Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.

10.
J Hazard Mater ; 469: 133884, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412647

RESUMO

Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd. The mechanisms by which MPs influence soil Cd were discussed from direct and indirect perspectives. Results showed that there was no significant difference in the leachability of soil Cd with/without aged PS. Additionally, aged PS led to a significant decrease in the bioaccessibility of soil Cd in gastric phase, but not in small intestinal phase. The increase in surface roughness and the new characteristic peaks (e.g., Si-O-Si) of aged PS directly accounted for the change in Cd bioaccessibility. The change in organic matter content indirectly accounted for the exceptional increase in Cd bioaccessibility of black soil with aged PS in small intestinal phase. Furthermore, the changes in cation exchange capacity and Cd mobility factor caused by aged PS explained the change in Cd leachability. These results contribute to a deeper understanding about environmental and public health in complicated emerging scenarios.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Idoso , Cádmio/toxicidade , Cádmio/análise , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Disponibilidade Biológica
11.
Phytochemistry ; 220: 113992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301947

RESUMO

Seven undescribed neovibsane-type diterpenoids (1-7) were isolated from the leaves of Viburnum odoratissimum. Their planar structures and relative configurations were elucidated based on a combination of 1D and 2D NMR analysis. The absolute configurations were confirmed by Rh2(OCOCF3)4-induced ECD analysis and comparison of experimental and TDDFT-calculated ECD spectrum. Based on the empirical results of the ECD of in situ formed Rh-complexes, rapid determination of the absolute configuration of C-14 within vibsane-type diterpenoids was proposed. In addition, 3 exhibited a high neuroblastoma cell protective effect of 81.8 % at 50 µM (the control group showed a neuroblastoma cell protective effect of 56.2 % at 50 µM).


Assuntos
Diterpenos , Neuroblastoma , Viburnum , Viburnum/química , Estrutura Molecular , Diterpenos/química , Folhas de Planta/química
12.
Huan Jing Ke Xue ; 45(1): 470-479, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216496

RESUMO

Contaminants such as microplastics (MPs) and heavy metals are commonly found in soils, both of which are extremely difficult to degrade and can easily form compound contamination, altering the physicochemical properties of the soil and thus potentially changing the growth and physiological and ecological characteristics of plants. In order to study the effects of the combined contamination of soil MPs and heavy metals on soil properties and plant growth, polystyrene microplastics (PS-MPs) with a particle size of 3 µm and the heavy metal cadmium were selected in the study. The changes in the physicochemical properties of soil and their effects on lettuce (Lactuca sativa) seed germination and seedling growth were studied at various exposure concentrations of PS-MPs (0, 10, 50, 100, 200, and 400 mg·kg-1) and combined with different Cd contamination concentrations (0, 1.2, and 6.0 mg·kg-1), respectively. The results showed that soil organic matter (SOM), available phosphorus (AP), alkali-hydrolysable nitrogen (AHN), and available kalium (AK) showed significant decreases as the intensity of PS-MPs combined with Cd contamination increased. Simultaneously, PS-MPs combined with Cd contamination also significantly reduced the germination rate of lettuce seeds, but low concentrations of PS-MPs slowed down the effect of Cd (6.0 mg·kg-1) contamination on lettuce seeds, and high concentrations of PS-MPs enhanced the effect of Cd (6.0 mg·kg-1). The fresh weight, dry weight, and plant height of lettuce seedlings showed an increasing and then decreasing trend with increasing exposure to PS-MPs. Chlorophyll content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) showed a decreasing trend, whereas malondialdehyde (MDA) content showed an overall increasing trend under different Cd concentrations. The main physicochemical indicators of the soil were negatively correlated with MDA of lettuce seedlings, whereas other indicators of the seedlings were positively correlated. The combined contamination of PS-MPs and Cd could affect the germination of plant seeds and the physiological and ecological characteristics of seedlings by changing the physicochemical properties of the soil. Both exposure to single PS-MPs contaminants and the combination of PS-MPs with Cd inhibited the germination of lettuce seeds and affected the physiological activities of their seedlings, and the inhibition was significantly increased with increasing exposure. Low exposure to PS-MPs or the combination of PS-MPs with Cd contamination exhibited a promotive effect on lettuce seedling growth. High exposure to PS-MPs combined with Cd contamination exhibited significant ecological effects on lettuce seedlings, and high exposure to PS-MPs exacerbated the ecotoxicological effects of Cd contaminants on lettuce seedlings, and PS-MPs and Cd exhibited synergistic effects. The results can provide some reference for assessing the ecological effects of MPs and heavy metal pollution in soil-plant systems.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Microplásticos , Lactuca , Plásticos , Poliestirenos , Solo , Metais Pesados/metabolismo , Plântula , Poluentes do Solo/análise
13.
Bioorg Chem ; 143: 107007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039928

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high mortality and poor prognosis. WBDC-1 is a novel highly oxidized germacranolide from the Elephantopus tomentosus in our previous work, which has excellent anti-HCC activity, but the detailed mechanism is still unclear. In this study, we found that WBDC-1 was able to inhibit the proliferation and colony formation of Hep3B and HepG2 cells, as well as the cell migration ability and EMT. In addition, WBDC-1 showed no obvious toxicity to normal liver epithelial cells L-02. The potential targets of WBDC-1 were predicted by network pharmacology, and the following verified experiments showed that WBDC-1 exerted anti-HCC effect by targeting EGFR. Mechanismly, subsequent biological analysis showed that WBDC-1 can inhibit EGFR and its downstream RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways. Overexpression of EGFR reversed the anticancer properties of WBDC-1. Consistent with in vitro experiments, WBDC-1 was able to inhibit tumor growth and was non-toxic in xenograft tumor models. In summary, this study revealed a potential tumor suppressive mechanism of WBDC-1 and provided a novel strategy for HCC treatment. It also laid a foundation for further research on the anti-tumor effect of highly oxidized germacranolides.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sesquiterpenos de Germacrano , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB
15.
Angew Chem Int Ed Engl ; 62(50): e202311601, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870901

RESUMO

Boron trifluoride (BF3 ) is a highly corrosive gas widely used in industry. Confining BF3 in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3 corrosion. Herein, we designed and synthesized a Lewis basic single-crystalline hydrogen-bond crosslinked organic framework (HC OF-50) for BF3 storage and its application in catalysis. Specifically, we introduced self-complementary ortho-alkoxy-benzamide hydrogen-bonding moieties to direct the formation of highly organized hydrogen-bonded networks, which were subsequently photo-crosslinked to generate HC OFs. The HC OF-50 features Lewis basic thioether linkages and electron-rich pore surfaces for BF3 uptake. As a result, HC OF-50 shows a record-high 14.2 mmol/g BF3 uptake capacity. The BF3 uptake in HC OF-50 is reversible, leading to the slow release of BF3 . We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2 O. The elucidation of the structure-property relationship, as provided by the single-crystal X-ray structures, combined with the high BF3 uptake capacity and controlled sorption, highlights the molecular understanding of framework-guest interactions in addressing contemporary challenges.

17.
Phytochemistry ; 215: 113857, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716545

RESUMO

A chemical investigation of Solanum lyratum Thunb. (Solanaceae) afforded six pairs of enantiomeric lignanamides consisting of twelve undescribed compounds, along with two undescribed racemic mixtures, and the separations of the enantiomers were accomplished by chiral-phase HPLC. The structures of these undescribed compounds were elucidated by the analysis of spectroscopic data, NMR and electronic circular dichroism calculations. All isolated compounds were assessed for neuroprotective activities in H2O2-induced human neuroblastoma SH-SY5Y cells, and acetylcholinesterase (AChE) inhibitory activities. Among tested isolates, some enantiomeric lignanamides exhibited conspicuous neuroprotective effects and AChE inhibitory effect.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Solanum , Humanos , Estrutura Molecular , Peróxido de Hidrogênio , Acetilcolinesterase , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química
18.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693461

RESUMO

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimized a bacterial CRISPR-hybrid system coupled with FACS, and identified novel high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allowed effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.

19.
J Am Chem Soc ; 145(37): 20189-20195, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37647087

RESUMO

Sulfation widely exists in the eukaryotic proteome. However, understanding the biological functions of sulfation in peptides and proteins has been hampered by the lack of methods to control its spatial or temporal distribution in the proteome. Herein, we report that fluorosulfate can serve as a latent precursor of sulfate in peptides and proteins, which can be efficiently converted to sulfate by hydroxamic acid reagents under physiologically relevant conditions. Photocaging the hydroxamic acid reagents further allowed for the light-controlled activation of functional sulfopeptides. This work provides a valuable tool for probing the functional roles of sulfation in peptides and proteins.


Assuntos
Proteoma , Sulfatos , Peptídeos , Eucariotos , Ácidos Hidroxâmicos , Óxidos de Enxofre
20.
Chem Biodivers ; 20(9): e202300941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548481

RESUMO

Four pairs of aryldihydronaphthalene-type lignanamide enantiomers were isolated from Solanum lyratum (Solanaceae). The enantiomeric separation was accomplished by chiral-phase HPLC, and five undescribed compounds were elucidated. Analysis by various spectroscopy and ECD calculations, the structures of undescribed compounds were illuminated. The neuroprotective effects of all compounds were evaluated using H2 O2 -induced human neuroblastoma SH-SY5Y cells and AchE inhibition activity. Among them, compound 4 a exhibited remarkable neuroprotective effects at high concentrations of 25 and 50 µmol/L comparable to Trolox. Compound 1 a showed the highest AchE inhibition with the IC50 value of 3.06±2.40 µmol/L. Molecular docking of the three active compounds was performed and the linkage between the compounds and the active site of AchE was elucidated.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Solanum , Humanos , Solanum/química , Fármacos Neuroprotetores/química , Simulação de Acoplamento Molecular , Estereoisomerismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA