Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705211

RESUMO

The subsequence anaerobic digestion (AD) of dewatered sludge (DWS) from wastewater treatment plants necessitates an emphasis on enhancing methane production and dewaterability. The effect of different nanobubble water (NBW) on AD of DWS was investigated under mesophilic conditions. Cumulative methane production was improved by 9.0-27.8% with the addition of different NBW (Air, CO2, He, and N2). NBW improved methanogenic performance by significantly enhancing the hydrolysis of sludge AD. Results from the digestate, the capillary suction time, specific resistance to filtration, and moisture content could be decreased by 14.6-18.2%, 18.8-29.6%, and 13.6-19.5%, respectively. The addition of NBW can improve the dewaterability of digestate by reducing the digestate particle size and increasing the zeta potential of digestate. The addition of NBW significantly increased methane production and improved dewaterability in AD; Air-NBW showed the best improvement.


Assuntos
Metano , Esgotos , Metano/metabolismo , Anaerobiose , Água/química , Tamanho da Partícula , Hidrólise
2.
Bioresour Technol ; 400: 130682, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599354

RESUMO

Temperature-phased anaerobic digestion (TPAD) and microbial electrolysis cell (MEC) are both able to improve hydrolysis and methane yield during anaerobic digestion (AD) of dewatered sludge. However, the effect of TPAD and MEC integration at different temperatures and different phases is unclear. This study investigated the effect of the integration of intermittent energization MEC in different phases of TPAD on the digestion of dewatered sludge. Thermophilic and MEC hydrolysis could release higher total ammonia nitrogen of 186.0% and 10.3% than control, mesophilic methanogenesis phase integrated with MEC relieved the ammonia inhibition and accelerated the acid utilization leading to the relief of acid accumulation. The ultimate methane yield of the TPAD integrated with MEC was increased by 118.9%, in which the relative abundance of Methanothermobacteria and Methanosarcina was increased. Therefore, intermittent energization MEC integrated TPAD synchronously improved the hydrolysis and methane yield.


Assuntos
Eletrólise , Metano , Esgotos , Temperatura , Metano/metabolismo , Hidrólise , Esgotos/microbiologia , Anaerobiose , Amônia/metabolismo , Água/química , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA