Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 12(19): 5076-5090, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39219371

RESUMO

Metabolic disorders of cancer cells create opportunities for metabolic interventions aimed at selectively eliminating cancer cells. Nevertheless, achieving this goal is challenging due to cellular plasticity and metabolic heterogeneity of cancer cells. This study presents a dual-drug-loaded, macrophage membrane-coated polymeric nanovesicle designed to reprogram cancer metabolism with high specificity through integrated extracellular and intracellular interventions. This nanoformulation can target cancer cells and largely reduce their glucose intake, while the fate of intracellular glucose internalized otherwise is redirected at the specially introduced oxidation reaction instead of inherent cancer glycolysis. Meanwhile, it inhibits cellular citrate intake, further reinforcing metabolic intervention. Furthermore, the nanoformulation causes not only H2O2 production, but also NADPH down-regulation, intensifying redox damage to cancer cells. Consequently, this nanoformulation displays highly selective toxicity to cancer cells and minimal harm to normal cells mainly due to metabolic vulnerability of the former. Once administered into tumor-bearing mice, this nanoformulation is found to induce the transformation of pro-tumor tumor associated macrophages into the tumor-suppressive phenotype and completely inhibit tumor growth with favourable biosafety.


Assuntos
Nanopartículas , Polímeros , Animais , Camundongos , Humanos , Polímeros/química , Polímeros/farmacologia , Polímeros/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Glucose/metabolismo , Células RAW 264.7 , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Portadores de Fármacos/química , Proliferação de Células/efeitos dos fármacos , Reprogramação Metabólica
2.
ACS Nano ; 18(34): 23497-23507, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146387

RESUMO

Colorectal cancer (CRC) is a major global health concern, and the development of effective treatment strategies is crucial. Enzyme prodrug therapy (EPT) shows promise in combating tumors but faces challenges in achieving sustained expression of therapeutic enzymes and optimal biological distribution. To address these issues, a fungi-triggered in situ chemotherapeutics generator (named as SC@CS@5-FC) was constructed via oral delivery of a prodrug (5-fluorocytosine, 5-FC) for the treatment of orthotopic colorectal tumor. When SC@CS@5-FC targets the tumor through tropism by Saccharomyces cerevisiae (SC), the chemotherapeutic generator could be degraded under abundant hyaluronidase (HAase) in the tumor microenvironment by an enzyme-responsive gate to release prodrug (5-FC). And nontoxic 5-FC was catalyzed to toxic chemotherapy drug 5-fluorouracil (5-FU) by cytosine deaminase (CD) of SC. Meanwhile, SC and zinc-coordinated chitosan nanoparticles could be used as immune adjuvants to activate antigen-presenting cells and further enhance the therapeutic effect. Our results demonstrated that SC@CS@5-FC could effectively inhibit tumor growth and prolong mouse survival in an orthotopic colorectal cancer model. This work utilizes living SC as a dynamotor and positioning system for the chemotherapeutic generator SC@CS@5-FC, providing a strategy for oral enzyme prodrug therapy for the treatment of orthotopic colorectal.


Assuntos
Neoplasias Colorretais , Flucitosina , Fluoruracila , Imunoterapia , Pró-Fármacos , Saccharomyces cerevisiae , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Camundongos , Humanos , Flucitosina/farmacologia , Flucitosina/química , Administração Oral , Fluoruracila/farmacologia , Fluoruracila/química , Fluoruracila/administração & dosagem , Citosina Desaminase/metabolismo , Quitosana/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Hialuronoglucosaminidase/metabolismo , Camundongos Endogâmicos BALB C , Nanopartículas/química , Ensaios de Seleção de Medicamentos Antitumorais
3.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150297

RESUMO

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adjuvantes Imunológicos , Lipossomos , Imiquimode , Neoplasias/patologia , Imunoterapia , Linhagem Celular Tumoral , Fototerapia
4.
Biomaterials ; 301: 122274, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586233

RESUMO

Inflammatory bowel disease (IBD) is characterized by the high level of reactive oxygen species (ROS) and highly dysfunctional intestinal flora. Here, a stimulation-responsive mucoadhesive probiotic Lac@HDP was rationally constructed for achieving specific adhesion of colitis site and depleting high level of ROS in inflammatory site. Briefly, Lac is Lactobacillus acidophilus, HDP is obtained by hyaluronic acid grafted with dopamine protected by phenylboric acid. Specifically, by consuming a large amount of ROS, phenyl borate group of Lac@HDP is oxidized and fractured, thus exposing the catechol hydroxyl group and obtaining strong mucosal adhesion ability, thereby significantly prolong the retention time of Lac in the inflammatory site. In the murine model of acute and chronic colitis, the stimulation-responsive mucoadhesive probiotics were significantly more effective in alleviating colitis symptoms than antioxidants and probiotics alone. In addition, the abundance and diversity of intestinal flora were increased after treatment with Lac@HDP, which was helpful to alleviate IBD. Importantly, the stimulation-responsive mucoadhesive probiotics have good biological safety in vivo, which provides the prospect of clinical application in the future.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Camundongos , Animais , Espécies Reativas de Oxigênio , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/tratamento farmacológico , Probióticos/uso terapêutico
5.
Adv Drug Deliv Rev ; 185: 114296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439571

RESUMO

Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.


Assuntos
Bactérias , Neoplasias , Bactérias/genética , Bioengenharia , Humanos , Neoplasias/terapia
6.
Biomaterials ; 281: 121369, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026671

RESUMO

Tumor cells obtain energy supply from different metabolic pathways to maintain survival. In this study, a tumor acidity-responsive spherical nanoparticle (called as LMGC) was designed by attaching glucose oxidase (GOx) and mineralizing calcium carbonate on the surface of liquid metal nanoparticles to integrate the synergistic effect of adenosine triphosphate (ATP) generation inhibition and photothermal therapy (PTT) for enhanced tumor therapy. After GOx catalysis, the process of glycolysis was inhibited, and the increased H2O2 level enhanced the intratumoral oxidative stress. Besides, the gluconic acid production accelerated the degradation of LMGC and promoted Ca2+-mediated mitochondrial dysfunction. The inhibition of glycolysis and mitochondrial metabolism could significantly reduce ATP production and down-regulate heat shock protein (HSP) expression, which would reduce tumor cells heat resistance and improve PTT therapeutic effect. This liquid metal-based ATP inhibition system with enhanced therapeutic effect will find great potential for tumor treatment.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Glicólise , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Terapia Fototérmica
7.
Adv Mater ; 34(12): e2109213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995395

RESUMO

The major hurdle in glioblastoma therapy is the low efficacy of drugs crossing the blood-brain barrier (BBB). Neisseria meningitidis is known to specifically enrich in the central nervous system through the guidance of an outer membrane invasion protein named Opca. Here, by loading a chemotherapeutic drug methotrexate (MTX) in hollow manganese dioxide (MnO2 ) nanoparticles with surface modification of the Opca protein of Neisseria meningitidis, a bionic nanotherapeutic system (MTX@MnO2 -Opca) is demonstrated to effectively overcome the BBB. The presence of the Opca protein enables the drug to cross the BBB and penetrate into tumor tissues. After accumulating in glioblastoma, the nanotherapeutic system catalyzes the decomposition of excess H2 O2 in the tumor tissue and thereby generates O2 , which alleviates tumor hypoxia and enhances the effect of chemotherapy in the treatment of glioblastoma. This bionic nanotherapeutic system may exhibit great potential in the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Neisseria meningitidis , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Compostos de Manganês , Óxidos/farmacologia
8.
Nano Lett ; 21(10): 4270-4279, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33955768

RESUMO

Engineered bacteria are promising bioagents to synthesize antitumor drugs at tumor sites with the advantages of avoiding drug leakage and degradation during delivery. Here, we report an optically controlled material-assisted microbial system by biosynthesizing gold nanoparticles (AuNPs) on the surface of Shewanella algae K3259 (S. algae) to obtain Bac@Au. Leveraging the dual directional electron transport mechanism of S. algae, the hybrid biosystem enhances in situ synthesis of antineoplastic tetrodotoxin (TTX) for a promising antitumor effect. Because of tumor hypoxia-targeting feature of facultative anaerobic S. algae, Bac@Au selectively target and colonize at tumor. Upon light irradiation, photoelectrons produced by AuNPs deposited on bacterial surface are transferred into bacterial cytoplasm and participate in accelerated cell metabolism to increase the production of TTX for antitumor therapy. The optically controlled material-assisted microbial system enhances the efficiency of bacterial drug synthesis in situ and provides an antitumor strategy that could broaden conventional therapy boundaries.


Assuntos
Nanopartículas Metálicas , Shewanella , Ouro , Tetrodotoxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA