RESUMO
BACKGROUND: Currently, numerous studies have indicated that individuals with internet gaming disorder (IGDs) have aberrant functional connection patterns between multiple brain regions and networks. However, temporal variability in the intra- and interhemispheric dynamic functional connectivity in IGDs remains unknown. METHODS: This study investigated resting-state functional magnetic resonance data from 55 IGDs and 50 demographically matched healthy controls (HCs). Functional connectivity density (FCD) combined with sliding window analysis is employed to calculate the temporal variability of global functional connectivity. The temporal variability of dynamic functional connectivity further quantified utilizing the standard deviations of global, intra-, and interhemispheric FCD. Finally, correlation analyses were performed between dynamic FCD varience (dFCD) in differential brain regions and clinical behaviors. RESULT: IGDs showed decreased intra- and interhemispheric dFCD variance in the visual attention network (precuneus and calcarine) and also demonstrated hemispheric-level dFCD variance abnormalities in the posterior cingulate cortex (PCC) compared to HCs. Moreover, abnormal global dFCD variability of the calcarine and ipsilateral dFCD variability of the PCC were negatively correlated with the severity of IGDs in the IGD group. CONCLUSION: Our results demonstrate abberant intra- and interhemispheric dynamic functional connectivity in the visual attention network, which emphasizes the neurobiological basis for impaired concentration in IGDs.
RESUMO
BACKGROUND: Current evidence underlines the active role of neural infiltration and axonogenesis within the tumor microenvironment (TME), with implications for tumor progression. Infiltrating nerves stimulate tumor growth and dissemination by secreting neurotransmitters, whereas tumor cells influence nerve growth and differentiation through complex interactions, promoting tumor progression. However, the role of neural infiltration in the progression of non-small cell lung cancer (NSCLC) remains unclear. METHODS: This study employs the techniques of immunohistochemistry, immunofluorescence, RNA sequencing, molecular biology experiments, and a murine orthotopic lung cancer model to deeply analyze the specific mechanisms behind the differential efficacy of NSCLC immunotherapy from the perspectives of neuro-tumor signal transduction, tumor metabolism, and tumor immunity. RESULTS: This study demonstrates that nerve growth factor (NGF) drives neural infiltration in NSCLC, and 5-hydroxytryptamine (5-HT), which is secreted by nerves, is significantly elevated in tumors with extensive neural infiltration. Transcriptome sequencing revealed that 5-HT enhanced glycolysis in NSCLC cells. Pathway analysis indicated that 5-HT activated the PI3K/Akt/mTOR pathway, promoting tumor metabolic reprogramming. This reprogramming exacerbated immunosuppression in the TME. Neutralizing 5-HT-mediated metabolic reprogramming in tumor immunity enhanced the efficacy of PD-1 monoclonal antibody treatment in mice. CONCLUSIONS: The findings of this study provide a novel perspective on the crosstalk between nerves and lung cancer cells and provide insights into further investigations into the role of nerve infiltration in NSCLC progression.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Humanos , Camundongos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/imunologia , Animais , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Feminino , Reprogramação MetabólicaRESUMO
BACKGROUND: The impact of tobacco smoking on global health persists and it is essential to understand the progression of addiction and the involvement of neurotransmitters. METHODS: This study assessed 47 participants with tobacco use disorder (TUD) categorized based on changes in Fagerström Test for Nicotine Dependence (FTND) scores over 6 years: progressive TUD (pTUD), regressive TUD (rTUD), and stable TUD (sTUD). Additionally, 35 healthy controls were included. Resting-state functional magnetic resonance imaging was used to evaluate brain regional homogeneity (ReHo) and correlations with neurotransmitter distributions using JuSpace. RESULTS: Significant differences in ReHo were observed among pTUD, rTUD, sTUD, and controls. After strict Bonferroni correction, rTUD exhibited increased ReHo in the dorsolateral superior frontal gyrus compared to sTUD (p < 0.001) and controls (p < 0.001). Both pTUD (p < 0.001) and rTUD (p < 0.001) showed decreased ReHo in the superior temporal gyrus compared to sTUD. sTUD had increased ReHo in the supramarginal gyrus compared to all other groups (p < 0.001, p < 0.001, p = 0.002, separately). The strongest association, which survived rigorous Bonferroni correction, was between the ReHo changes in rTUD compared to sTUD and neurotransmitter distribution. This includes 5-hydroxytryptamine receptor 2A (p = 0.001), gamma-aminobutyric acid type A receptor (p < 0.001), norepinephrine transporter (p < 0.001), and N-Methyl-D-Aspartate (p = 0.002). CONCLUSIONS: This study provides insights into how smoking behaviors correlate with alterations in brain activity and neurotransmitter function. By elucidating these neural links to tobacco use disorder progression, our findings contribute to a deeper understanding of smoking's neurological impact and potentially inform more targeted therapeutic strategies.
RESUMO
Smoking puts patients at high risk for cognitive and psychiatric disorders. The aim of this study was to explore the effects of nicotine use on primary visual network (PVN) and its association with neurotransmitters. A total of 59 tobacco use disorder (TUD) patients and 51 healthy controls (HC) participated in this study and underwent resting state functional magnetic resonance imaging scans. Functional connectivity (FC) within the network was explored using independent component analysis. In addition, the spatial correlations of PVN changes with neurotransmitters and their correlations with clinical characteristics of patients were evaluated using the JuSpace toolbox and SPSS. We found reduced FC within the PVN in patients with TUD compared with HC. In terms of relevant analysis, there is a spatial correlation between FC changes in the patient's PVN and a higher distribution of dopamine receptor and gamma-aminobutyric acid receptor. This study revealed changes in the FC and neurotransmitters of the PVN in patients with TUD, expanding the potential neural mechanisms underlying sensory perception and psychiatric disorders.
RESUMO
OBJECTIVE: To compare pre-defecation straining without rectal gel and post-defecation straining with the defecation phase, and to investigate their roles in evaluating pelvic organ prolapse (POP). MATERIAL & METHODS: Magnetic Resonance Defecography (MRD) images of 65 patients with a clinical diagnosis of POP were retrospectively reviewed by two independent readers. Measurements were taken at rest, pre-defecation straining without rectal gel, defecation, and post-defecation straining. The presence, sizes, and/or grades of cystocele, uterovaginal prolapse, widened levator hiatus, perineal descent, cul-de-sac hernia, rectocele, and rectal intussusception were evaluated and compared across the four phases. RESULTS: Compared to pre-defecation straining, both defecation and post-defecation straining detected more cases, larger sizes, and higher grades of prolapse in all compartments. When comparing defecation and post-defecation straining, the latter diagnosed four more cases of cystocele (80 % vs 73.9 %, p = 0.2) with larger size (-34.1 vs -29.0, p < 0.01) and higher grade (p = 0.19). Post-defecation straining also identified eight more cases of uterovaginal prolapse (89.2 % vs 73.9 %, p < 0.01) with larger size (-32.9 vs -26.4, p < 0.01) and higher grade (p < 0.01) compared to defecation. Conversely, defecation detected eight more cases of rectocele (46.2 % vs 33.9 %, p < 0.01) with larger size (9.2 vs 6.2 cm, p < 0.01) and higher grade (p = 0.26). CONCLUSION: Post-defecation straining effectively depicts the maximal extent of prolapse in the anterior and middle compartments, and should be performed whenever there is a clinical need for a comprehensive assessment of prolapse in these compartments.
RESUMO
BACKGROUND: Internet gaming disorder (IGD) is mainly characterized by its core dysfunction in higher-order brain cortices involved in inhibitory control, whose neurobiological basis remains unclear. Then, we will investigate local intrinsic neural activity (INA) alterations in IGD, ascertain whether these potential alterations are related to clinical characteristics, and further explore the underlying molecular architecture. METHOD: In this study, we performed the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) derived from resting-state functional magnetic resonance imaging (rs-fMRI) to explore the impact of IGD on local INA. Correlation analysis revealed the relationship between ReHo and fALFF in terms of group differences and clinical characteristics. Moreover, correlations between fALFF, ReHo, and PET- and SPECT-driven maps were investigated to elucidate the specific molecular architecture alternations in IGD. Finally, receiver operating characteristic curve (ROC) analysis was used to show the potential abilities of fALFF and ReHo in distinguishing individuals with IGD (IGDs) from healthy controls (HCs). RESULT: Compared with HCs, IGDs revealed increased ReHo and fALFF in the prefrontal cortex. Significantly decreased ReHo was observed in the temporal lobe, occipital lobe, and cerebellum. In addition, the ReHo values in the cerebellum_7b_R were positively correlated with internet addiction severity. ROC curve analysis showed that ReHo and fALFF-altered brain regions could effectively distinguish IGDs from HCs. More importantly, cross-modal correlations revealed local INA changes in brain regions associated with the monoamine neurotransmitter system and the less studied cholinergic/GABAergic system. CONCLUSION: These results suggest that local functional impairments are shown in the audiovisual and inhibitory control circuits in IGDs. This may be associated with underlying neurotransmitter system alterations. Therefore, this study provides the possibility of GABAergic receptor agonists and cholinergic receptor inhibitors for the treatment of IGD.
Assuntos
Encéfalo , Transtorno de Adição à Internet , Imageamento por Ressonância Magnética , Humanos , Masculino , Imageamento por Ressonância Magnética/métodos , Transtorno de Adição à Internet/metabolismo , Transtorno de Adição à Internet/fisiopatologia , Adulto Jovem , Adulto , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Mapeamento Encefálico/métodosRESUMO
OBJECTIVES: To investigate potential of enhancing image quality, maintaining interobserver consensus, and elevating disease diagnostic efficacy through the implementation of deep learning-based reconstruction (DLR) processing in 3.0 T cervical spine fast magnetic resonance imaging (MRI) images, compared with conventional images. METHODS: The 3.0 T cervical spine MRI images of 71 volunteers were categorized into two groups: sagittal T2-weighted short T1 inversion recovery without DLR (Sag T2w-STIR) and with DLR (Sag T2w-STIR-DLR). The assessment covered artifacts, perceptual signal-to-noise ratio, clearness of tissue interfaces, fat suppression, overall image quality, and the delineation of spinal cord, vertebrae, discs, dopamine, and joints. Spanning canal stenosis, neural foraminal stenosis, herniated discs, annular fissures, hypertrophy of the ligamentum flavum or vertebral facet joints, and intervertebral disc degeneration were evaluated by three impartial readers. RESULTS: Sag T2w-STIR-DLR images exhibited markedly superior performance across quality indicators (median = 4 or 5) compared to Sag T2w-STIR sequences (median = 3 or 4) (p < 0.001). No statistically significant differences were observed between the two sequences in terms of diagnosis and grading (p > 0.05). The interobserver agreement for Sag T2w-STIR-DLR images (0.604-0.931) was higher than the other (0.545-0.853), Sag T2w-STIR-DLR (0.747-1.000) demonstrated increased concordance between reader 1 and reader 3 in comparison to Sag T2w-STIR (0.508-1.000). Acquisition time diminished from 364 to 197 s through the DLR scheme. CONCLUSIONS: Our investigation establishes that 3.0 T fast MRI images subjected to DLR processing present heightened image quality, bolstered diagnostic performance, and reduced scanning durations for cervical spine MRI compared with conventional sequences.
Assuntos
Vértebras Cervicais , Aprendizado Profundo , Imageamento por Ressonância Magnética , Espondilose , Humanos , Espondilose/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Vértebras Cervicais/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Processamento de Imagem Assistida por Computador/métodosRESUMO
[This corrects the article DOI: 10.3389/fmicb.2024.1334045.].
RESUMO
Thallium (Tl), though not essential for biological systems, is widely used in industrial activities, resulting in soil pollution and adverse effects on soil biota. Systematic toxicological studies on Tl, especially concerning soil organisms, are relatively rare. This research evaluates the toxic effects of Tl on earthworms by measuring oxidative stress biomarkers, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG), and by assessing the expression of functional genes, such as heat shock protein 70 (Hsp70), metallothionein (MT), and annetocin (ANN). Additionally, this study employs the Biomarker Response Index (BRI) and two-way ANOVA to comprehensively assess the cumulative toxicity of Tl in earthworms. The findings indicate that Tl exposure significantly exacerbates oxidative stress and cellular damage in earthworms, particularly under conditions of high concentration and prolonged exposure. BRI results demonstrate a continuous decline in the physiological state of earthworms with increasing Tl concentration and exposure duration. Two-way ANOVA reveals significant dose-responsive increases in SOD and CAT activities, as well as in ANN gene expression. Apart from GST activity, other biomarkers significantly increased over time, and the changes in biomarkers such as SOD, CAT, MDA, and 8-OHdG were significantly influenced by dose and time. LSD post hoc tests show significant effects of dose, time, and their interactions on all biomarkers except for GST. These findings are valuable for gaining a deeper understanding of the ecological risks of Tl in soil environments and its potential threats to soil biota, aiding in the management of ecological risks associated with Tl-contaminated soils.
Assuntos
Biomarcadores , Oligoquetos , Estresse Oxidativo , Poluentes do Solo , Tálio , Oligoquetos/efeitos dos fármacos , Animais , Poluentes do Solo/toxicidade , Biomarcadores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tálio/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Superóxido Dismutase/metabolismo , Monitoramento Ambiental/métodos , Malondialdeído/metabolismo , Metalotioneína/metabolismo , Metalotioneína/genética , Catalase/metabolismoRESUMO
BACKGROUND: Obsessive-compulsive disorder (OCD) is a disabling disorder in which the temporal variability of regional brain connectivity is not well understood. The aim of this study was to investigate alterations in static and dynamic intrinsic neural activity (INA) in first-episode OCD and whether these changes have the potential to reflect neurotransmitters. METHODS: A total of 95 first-episode OCD patients and 106 matched healthy controls (HCs) were included in this study. Based on resting-state functional magnetic resonance imaging (rs-fMRI), the static and dynamic local connectivity coherence (calculated by static and dynamic regional homogeneity, sReHo and dReHo) were compared between the two groups. Furthermore, correlations between abnormal INA and PET- and SPECT-derived maps were performed to examine specific neurotransmitter system changes underlying INA abnormalities in OCD. RESULTS: Compared with HCs, OCD showed decreased sReHo and dReHo values in left superior, middle temporal gyrus (STG/MTG), left Heschl gyrus (HES), left putamen, left insula, bilateral paracentral lobular (PCL), right postcentral gyrus (PoCG), right precentral gyrus (PreCG), left precuneus and right supplementary motor area (SMA). Decreased dReHo values were also found in left PoCG, left PreCG, left SMA and left middle cingulate cortex (MCC). Meanwhile, alterations in INA present in brain regions were correlated with dopamine system (D2, FDOPA), norepinephrine transporter (NAT) and the vesicular acetylcholine transporter (VAChT) maps. CONCLUSION: Static and dynamic INA abnormalities exist in first-episode OCD, having the potential to reveal the molecular characteristics. The results help to further understand the pathophysiological mechanism and provide alternative therapeutic targets of OCD.
Assuntos
Imageamento por Ressonância Magnética , Neurotransmissores , Transtorno Obsessivo-Compulsivo , Humanos , Masculino , Feminino , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Adulto , Adulto Jovem , Neurotransmissores/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Estudos de Casos e Controles , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismoRESUMO
A growing body of evidence indicates the existence of abnormal local and long-range functional connection patterns in patients with alcohol use disorder (AUD). However, it has yet to be established whether AUD is associated with abnormal interhemispheric and intrahemispheric functional connection patterns. In the present study, we analysed resting-state functional magnetic resonance imaging data from 55 individuals with AUD and 32 healthy nonalcohol users. For each subject, whole-brain functional connectivity density (FCD) was decomposed into ipsilateral and contralateral parts. Correlation analysis was performed between abnormal FCD and a range of clinical measurements in the AUD group. Compared with healthy controls, the AUD group exhibited a reduced global FCD in the anterior and middle cingulate gyri, prefrontal cortex and thalamus, along with an enhanced global FCD in the temporal, parietal and occipital cortices. Abnormal interhemispheric and intrahemispheric FCD patterns were also detected in the AUD group. Furthermore, abnormal global, contralateral and ipsilateral FCD data were correlated with the mean amount of pure alcohol and the severity of alcohol addiction in the AUD group. Collectively, our findings indicate that global, interhemispheric and intrahemispheric FCD may represent a robust method to detect abnormal functional connection patterns in AUD; this may help us to identify the neural substrates and therapeutic targets of AUD.
Assuntos
Alcoolismo , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Alcoolismo/fisiopatologia , Alcoolismo/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Estudos de Casos e Controles , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Adulto JovemRESUMO
BACKGROUND: The incidence of behavioral addictions (BAs) associated with scientific and technological advances has been increasing steadily. Unfortunately, a large number of studies on the structural and functional abnormalities have shown poor reproducibility, and it remains unclear whether different addictive behaviors share common underlying abnormalities. Therefore, our objective was to conduct a quantitative meta-analysis of different behavioral addictions to provide evidence-based evidence of common structural and functional changes. METHODS: We conducted systematic searches in PubMed, Web of Science and Scopus from January 2010 to December 2023, supplementing reference lists of high-quality relevant meta-analyses and reviews, to identify eligible voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies. Using anisotropic seed-based D-Mapping (AES-SDM) meta-analysis methods, we compared brain abnormalities between BAs and healthy controls (HCs). RESULTS: There were 11 GMV studies (287 BAs and 292 HCs) and 26 fMRI studies (577 BAs and 545 HCs) that met inclusion criteria. Compared with HCs, BAs demonstrated significant reductions in gray matter volume (GMV) in (1) right anterior cingulate gyri extending into the adjacent superior frontal gyrus, as well as in the left inferior frontal gyrus and right striatum. (2) the bilateral precuneus, right supramarginal gyrus, and right fusiform gyrus were hyperfunction; (3) the left medial cingulate gyrus extended to the superior frontal gyrus, the left inferior frontal gyrus, and right middle temporal gyrus had hypofunction. CONCLUSIONS: Our study identified structural and functional impairments in brain regions involved in executive control, cognitive function, visual memory, and reward-driven behavior in BAs. Notably, fronto-cingulate regions may serve as common biomarkers of BAs.
Assuntos
Comportamento Aditivo , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Comportamento Aditivo/diagnóstico por imagem , Comportamento Aditivo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologiaRESUMO
Plastic pollution has emerged as a global environmental concern, impacting both terrestrial and marine ecosystems. However, understanding of plastic sources and transport mechanism at the catchment scale remains limited. This study introduces a multi-source plastic yield and transport model, which integrates catchment economic activities, climate data, and hydrological processes. Model parameters were calibrated using a combination of field observations, existing literature, and statistical random sampling techniques. The model demonstrated robust performance in simulating both plastic yield and transport from 2010 to 2020 in the upper and middle Mulan River Catchment, located in southeast China. The annual average yield coefficients were found to closely align with existing estimations, and the riverine outflow exhibited a high correlation coefficient of 0.97, with biases ranging from -63.0 % to -21.4 % across all monitoring stations. The analysis reveals that, on average, 12.5 ± 2.5 % of the total plastic yield is transported to rivers annually, with solid waste identified as the primary source, accounting for 37.8 ± 20.7 % of the total load to rivers, followed by agricultural film (26.4 ± 9.8 %), impermeable surfaces (21.5 ± 10.3 %), urban and rural sewage (10.4 ± 5.0 % and 3.0 ± 1.5 %, respectively), and industrial wastewater (0.9 ± 0.7 %). The annual average outflow was estimated to between 9.3 and 43.0 ton/year (median: 23.1) at a 95 % confidence level. This study not only provides insights into the primary sources and transport pathways of plastic pollution at the catchment scale, but also offers a valuable tool for informing effective plastic pollution mitigation strategies.
Assuntos
Monitoramento Ambiental , Plásticos , Rios , Modelos Teóricos , China , Poluentes Químicos da Água/análise , HidrologiaRESUMO
Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.
RESUMO
Promoting lattice oxygen mobility of Co-based catalysts is crucial to making progress in catalytic oxidation technology. The addition of manganese, a transition metal with similar ionic radius to cobalt and variable valence, was supposed to enhance the mobility of lattice oxygen species of Co-based oxide. A range of hollow CoMnaOx sub-nanosphere catalysts with different Mn/Co ratios was synthesized via a template-sacrificed method, and the effects of different Mn/Co ratios on the structural properties of the catalysts and their catalytic performance for benzene series volatile organic compounds (VOCs) oxidation were investigated. Hollow CoMn2Ox sub-nanosphere exhibited good catalytic activity for oxidation of toluene (T90 = 265 °C) and o-xylene (T90 = 297 °C), as well as excellent recycling ability and water resistance. By adjusting the Mn/Co ratio, metal ions enter into the different tetrahedral or octahedral active sites. Compared with Co3O4, the desorption temperature of surface lattice oxygen on CoMn2Ox decreased by 110 °C. These results demonstrate that the addition of manganese can encourage the electron transfer on CoMnaOx, indicating that the introduction of the appropriate amount of manganese accelerates the activation of gas O2 and mobility of surface lattice oxygen species, thereby expediting the oxidation of benzene series VOCs.
RESUMO
Previous researches of tobacco use disorder (TUD) has overlooked the hierarchy of cortical functions and single modality design separated the relationship between macroscopic neuroimaging aberrance and microscopic molecular basis. At present, intrinsic timescale gradient of TUD and its molecular features are not fully understood. Our study recruited 146 male subjects, including 44 heavy smokers, 50 light smokers and 52 non-smokers, then obtained their rs-fMRI data and clinical scales related to smoking. Intrinsic neural timescale (INT) method was performed to describe how long neural information was stored in a brain region by calculating the autocorrelation function (ACF) of each voxel to examine the difference in the ability of information integration among the three groups. Then, correlation analyses were conducted to explore the relationship between INT abnormalities and clinical scales of smokers. Finally, cross-modal JuSpace toolbox was used to investigate the association between INT aberrance and the expression of specific receptor/transporters. Compared to healthy controls, TUD subjects displayed decreased INT in control network (CN), default mode network (DMN), sensorimotor areas and visual cortex, and such trend of decreasing INT was more pronounced in heavy smokers. Moreover, various neurotransmitters (including dopaminergic, acetylcholine and µ-opioid receptors) were involved in the molecular mechanism of timescale decreasing and differed in heavy and light smokers. These findings supplied novel insights into the brain functional aberrance in TUD from an intrinsic neural dynamic perspective and confirm INT was a potential neurobiological marker. And also established the connection between macroscopic imaging aberrance and microscopic molecular changes in TUD.
Assuntos
Imageamento por Ressonância Magnética , Tabagismo , Humanos , Masculino , Adulto , Tabagismo/diagnóstico por imagem , Tabagismo/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Adulto Jovem , Neurotransmissores/metabolismo , Conectoma , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/fisiopatologiaRESUMO
BACKGROUND: Short-term poor uterine involution manifests as uterine contraction weakness. This is one of the important causes of postpartum hemorrhage, posing a serious threat to the mother's life and safety. The study aims to investigate whether low-intensity focused ultrasound (LIFUS) can effectively shorten lochia duration, alleviate postpartum complications, and accelerate uterine involution compared with the sham treatment. METHODS: A multicenter, concealed, randomized, blinded, and sham-controlled clinical trial was conducted across three medical centers involving 176 subjects, utilizing a parallel group design. Enrollment occurred between October 2019 and September 2020, with a 42-day follow-up period. Participants meeting the inclusion and exclusion criteria based on normal prenatal examinations were randomly divided into the LIFUS group or the sham operation group via computer-generated randomization. Patients in the LIFUS group received usual care with the LIFUS protocol, wherein a LIFUS signal was transmitted to the uterine site through coupling gel, or sham treatment, where no low-intensity ultrasound signal output was emitted. The primary outcome, lochia duration, was assessed via weekly telephonic follow-ups post-discharge. The involution of the uterus, measured by uterine fundus height, served as the secondary outcome. RESULTS: Among the 256 subjects screened for eligibility, 176 subjects were enrolled and randomly assigned to either the LIFUS group (n = 88) or the Sham group (n = 88). Data on the height of the uterine fundus were obtained from all the patients, with 696 out of 704 measurements (99%) successfully recorded. Overall, a statistically significant difference was noted in time to lochia termination (hazard ratio: 2.65; 95% confidence interval [CI]: 1.82-3.85; P < 0.001). The decline in fundal height exhibited notable discrepancies between the two groups following the second treatment session (mean difference: -1.74; 95% CI: -1.23 to -2.25; P < 0.001) and the third treatment session (mean difference: -3.26; 95% CI: -2.74 to -3.78; P < 0.001) after delivery. None of the subjects had any adverse reactions, such as skin damage or allergies during the treatment. CONCLUSIONS: This study found that LIFUS treatment can promote uterine involution and abbreviate the duration of postpartum lochia. Ultrasound emerges as a safe and effective intervention, poised to address further clinical inquiries in the domain of postpartum rehabilitation.
Assuntos
Período Pós-Parto , Útero , Humanos , Feminino , Adulto , Útero/diagnóstico por imagem , Gravidez , Terapia por Ultrassom/métodos , Hemorragia Pós-Parto/terapia , Resultado do Tratamento , Contração Uterina/fisiologiaRESUMO
The traditional prescription of Liangxue-Qushi-Zhiyang decoction (LQZ) has been demonstrated to be efficacious in treating atopic dermatitis (AD), a chronic inflammatory skin disorder marked by intense itching, redness, rashes, and skin thickening. Nevertheless, there has been an inadequate systematic exploration of the potential targets, biological processes, and pathways for AD treatment through LQZ. The study objective was to evaluate the efficacy and possible mechanism of LQZ in AD mice. In our study, we identified the primary compounds of LQZ, analyzed hub targets, and constructed a network. Subsequently, the predicted mechanisms of LQZ in AD were experimentally studied and validated in vivo, as determined by network pharmacological analysis. A total of 80 serum components of LQZ were identified through ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), among which 49 compounds were absorbed into the bloodstream. Our results indicated that LQZ targets six putative key factors in the MAPK signaling pathway, which play essential roles in AD, namely, EGFR, p-MAPK1/3, p-MAPK14, IL-1ß, IL-6, and TNF-α. We observed spleen coefficient, dermatitis scores, and ear thickness were all downregulated in 2,4-dinitrochlorobenzene (DNCB)-induced mice after LQZ treatment. Histological analysis of the dorsal and ear skin further revealed that LQZ significantly decreased skin inflammation, epidermal thickness, and mast cell numbers compared to the DNCB group. Our study demonstrated the effectiveness of LQZ in reducing epidermal and dermal damage in a mouse model of AD. Furthermore, our findings suggest that downregulating the MAPK signaling pathway could be a potential therapeutic strategy for the treatment of AD.
RESUMO
The purpose of this research was to investigate the impact of dietary supplementation of Caragana korshinskii tannin (CKT) on rumen fermentation, methane emission, methanogen community and metabolome in rumen of sheep. A total of 15 crossbred sheep of the Dumont breed with similar body conditions, were divided into three groups (n = 5), which were fed with CKT addition at 0, 2 and 4%/kg DM. The study spanned a total of 74 days, with a 14-day period dedicated to adaptation and a subsequent 60-day period for conducting treatments. The results indicated that the levels of ammonia nitrogen (NH3-N) and acetate were reduced (p < 0.05) in rumen sheep fed with 2 and 4% CKT; The crude protein (CP) digestibility of sheep in 2 and 4% CKT groups was decreased(p < 0.05); while the neutral detergent fiber (NDF) digestibility was increased (p < 0.05) in 4% CKT group. Furthermore, the supplementation of CKT resulted in a decrease (p < 0.05) in daily CH4 emissions from sheep by reducing the richness and diversity of ruminal methanogens community, meanwhile decreasing (p < 0.05) concentrations of tyramine that contribute to methane synthesis and increasing (p < 0.05) concentrations of N-methy-L-glutamic acid that do not contribute to CH4 synthesis. However, CH4 production of DMI, OMI, NDFI and metabolic weight did not differ significantly across the various treatments. To sum up, the addition of 4% CKT appeared to be a viable approach for reducing CH4 emissions from sheep without no negative effects. These findings suggest that CKT hold promise in mitigating methane emissions of ruminant. Further investigation is required to evaluate it effectiveness in practical feeding strategies for livestock.