Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Macromolecules ; 57(5): 2363-2375, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495383

RESUMO

The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.

2.
Int J Radiat Oncol Biol Phys ; 118(5): 1308-1314, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104868

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive and lethal form of lung cancer and the overall 5-year survival (OS) for patients is a dismal 7%. Radiation therapy (RT) provides some benefit for selected patients with SCLC but could be improved with radiosensitizing agents. In this study, we identified novel radiosensitizers for SCLC by a CRISPR-Cas9 screen and evaluated the efficacy of ATM inhibitor AZD1390 as a radiosensitizer of SCLC. METHODS AND MATERIALS: We transduced the SCLC cell line SBC5 with a custom CRISPR sgRNA library focused on druggable gene targets and treated cells with RT. Cells collected at multiple timepoints were subjected to next-generation sequencing. We determined radiosensitization both in vitro with cell lines assessed by short-term viability and clonogenic assays, and in vivo mouse models by tumor growth delay. Pharmacodynamic effects of AZD1390 were quantified by ATM-Ser1981 phosphorylation, and RT-induced DNA damage by comet assay. RESULTS: Using a CRISPR dropout screen, we identified multiple radiosensitizing genes for SCLC at various timepoints with ATM as a top determinant gene for radiosensitivity. Validation by ATM knockout (KO) demonstrated increased radiosensitivity by short-term viability assay (dose modification factor [DMF]50 = 3.25-3.73 in SBC5 ATM-KO) and clonogenic assays (DMF37 1.25-1.65 in SBC5 ATM-KO). ATM inhibition by AZD1390 effectively abrogated ATM Ser1981 phosphorylation in SCLC cell lines and increased RT-induced DNA damage. AZD1390 synergistically increased the radiosensitivity of SCLC cell lines (cell viability assay: SBC5 DMF37 = 2.19, SHP77 DMF37 = 1.56, H446 DMF37 = 3.27, KP1 DMF37 = 1.65 at 100nM; clonogenic assay: SBC5 DMF37 = 4.23, H1048 DMF37 = 1.91), and in vivo murine syngeneic, KP1, and patient-derived xenograft (PDX) models, JHU-LX108 and JHU-LX33. CONCLUSIONS: In this study, we demonstrated that genetically and pharmacologically (AZD1390) inhibiting ATM markedly enhanced RT against SCLC, providing a novel pharmacologically tractable radiosensitizing strategy for patients with SCLC.


Assuntos
Neoplasias Pulmonares , Piridinas , Quinolonas , Radiossensibilizantes , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , RNA Guia de Sistemas CRISPR-Cas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Cell Rep ; 42(11): 113251, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37913774

RESUMO

Breast cancer (BC) prognosis and outcome are adversely affected by obesity. Hyperinsulinemia, common in the obese state, is associated with higher risk of death and recurrence in BC. Up to 80% of BCs overexpress the insulin receptor (INSR), which correlates with worse prognosis. INSR's role in mammary tumorigenesis was tested by generating MMTV-driven polyoma middle T (PyMT) and ErbB2/Her2 BC mouse models, respectively, with coordinate mammary epithelium-restricted deletion of INSR. In both models, deletion of either one or both copies of INSR leads to a marked delay in tumor onset and burden. Longitudinal phenotypic characterization of mouse tumors and cells reveals that INSR deletion affects tumor initiation, not progression and metastasis. INSR upholds a bioenergetic phenotype in non-transformed mammary epithelial cells, independent of its kinase activity. Similarity of phenotypes elicited by deletion of one or both copies of INSR suggest a dose-dependent threshold for INSR impact on mammary tumorigenesis.


Assuntos
Neoplasias Mamárias Experimentais , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/genética , Recidiva Local de Neoplasia , Transformação Celular Neoplásica/genética , Células Epiteliais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos
4.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697435

RESUMO

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Instabilidade Genômica , Recidiva Local de Neoplasia , Estruturas R-Loop , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36928661

RESUMO

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Assuntos
Proteína BRCA1 , Replicação do DNA , Síndrome Hereditária de Câncer de Mama e Ovário , Mutação , Transcrição Gênica , Humanos , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Replicação do DNA/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Síndrome Hereditária de Câncer de Mama e Ovário/fisiopatologia , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Regiões Promotoras Genéticas , Metiltransferases/deficiência , Metiltransferases/genética , Estruturas R-Loop , Morte Celular
6.
Cancers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428645

RESUMO

Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.

7.
Clin Cancer Res ; 28(9): 1966-1978, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165102

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive disease with an overall 5-year survival rate of less than 10%. Treatment for SCLC with cisplatin/etoposide chemotherapy (C/E) ± radiotherapy has changed modestly over several decades. The ubiquitin-proteasome system is an underexplored therapeutic target for SCLC. We preclinically evaluated TAK-243, a first-in-class small molecule E1 inhibitor against UBA1. EXPERIMENTAL DESIGN: We assessed TAK-243 in 26 SCLC cell-lines as monotherapy and combined with C/E, the PARP-inhibitor, olaparib, and with radiation using cell viability assays. We interrogated TAK-243 response with gene expression to identify candidate biomarkers. We evaluated TAK-243 alone and in combination with olaparib or radiotherapy with SCLC patient-derived xenografts (PDX). RESULTS: Most SCLC cell lines were sensitive to TAK-243 monotherapy (EC50 median 15.8 nmol/L; range 10.2 nmol/L-367.3 nmol/L). TAK-243 sensitivity was associated with gene-sets involving the cell cycle, DNA and chromatin organization, and DNA damage repair, while resistance associated with cellular respiration, translation, and neurodevelopment. These associations were also observed in SCLC PDXs. TAK-243 synergized with C/E and olaparib in vitro across sensitive and resistant SCLC cell lines. Considerable TAK-243-olaparib synergy was observed in an SCLC PDX resistant to both drugs individually. TAK-243 radiosensitization was also observed in an SCLC PDX. CONCLUSIONS: TAK-243 displays efficacy in SCLC preclinical models. Enrichment of gene sets is associated with TAK-243 sensitivity and resistance. TAK-243 exhibits synergy when combined with genotoxic therapies in cell lines and PDXs. TAK-243 is a potential therapeutic strategy to improve SCLC patient outcomes, both as a single agent and in combination with existing therapies.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Complexo de Endopeptidases do Proteassoma , Pirazóis , Pirimidinas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Sulfetos , Sulfonamidas , Ubiquitina , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Plants ; 7(8): 1010-1014, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326529

RESUMO

Field photographs of plant species are crucial for research and conservation, but the lack of a centralized database makes them difficult to locate. We surveyed 25 online databases of field photographs and found that they harboured only about 53% of the approximately 125,000 vascular plant species of the Americas. These results reflect the urgent need for a centralized database that can both integrate and complete the photographic record of the world's flora.


Assuntos
Biodiversidade , Bases de Dados Factuais/estatística & dados numéricos , Geografia/estatística & dados numéricos , Fotografação/estatística & dados numéricos , Plantas , América
9.
Am J Bot ; 108(3): 461-471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660257

RESUMO

PREMISE: Altingiaceae is a small family with a bimodal Northern Hemisphere distribution in eastern North America and eastern Asia, and a rich Cenozoic fossil record. The charcoalified fossil infructescence Paleoaltingia gen. nov. from Turonian (Late Cretaceous) deposits of New Jersey, provides new evidence of early Altingiaceae reproductive structures and has biogeographical implications in understanding modern distribution. METHODS: Fossils were prepared using standard methods for obtaining and processing mesofossils. The fossils were examined with light microscopy, and scanning electron microscopy for observing structural and anatomical details. Phylogenetic analyses were performed using a combined matrix of molecular and morphological data. RESULTS: Based on morphological features of the fossil and the phylogenetic analyses, the new genus, Paleoaltingia, with two species (Paleoaltingia ovum-dinosauri and P. polyodonta) is erected. The phylogenetic position of Paleoaltingia confirms affinities with living Altingiaceae. CONCLUSIONS: The combination of characters-simple capitate infructescence, syncarpous bicarpellate, and bilocular ovary, unique sterile phyllome structures-indicates that the fossil taxa have close affinities to modern Altingiaceae. The unique characters of the phyllomes provide new information on the floral diversity of Altingiaceae. The emergence of Paleoaltingia in Late Cretaceous sediments of Northeastern North America represents the earliest fossil record of Altingiaceae and provides new insights into its biogeography.


Assuntos
Fósseis , Ásia Oriental , Microscopia Eletrônica de Varredura , New Jersey , Filogenia
10.
Am J Bot ; 107(12): 1763-1771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274448

RESUMO

PREMISE: Fossils provide fundamental evidence of the evolutionary processes that crafted today's biodiversity and consequently for understanding life on Earth. We report the finding of Myrtaceidites eucalyptoides pollen grains preserved within the anthers of a 52-million-year-old Eucalyptus flower collected at Laguna del Hunco locality of Argentinean Patagonia and discuss its implications in understanding the evolutionary history of the iconic Australian genus Eucalyptus. METHODS: Pollen grains were extracted from the flower's anthers and were then observed under light microscopy and scanning electron microscopy. The phylogenetic position of the fossil was investigated by adding pollen data to a previously published total-evidence matrix and analyzing it using parsimony. RESULTS: We erect the species Eucalyptus xoshemium for the fossil flower. Pollen extracted from E. xoshemium belongs to the species Myrtaceidites eucalyptoides, which, until now, was only known as dispersed pollen. The numerous pollen grains recovered from the single flower allowed estimation of M. eucalyptoides' variability. Results of the phylogenetic analysis reinforce the position of this fossil within crown group Eucalyptus. CONCLUSIONS: The discovery of these pollen grains within a Patagonian Eucalyptus fossil flower confirms the hypothesis that Myrtaceidites eucalyptoides represents fossil pollen in the Eucalyptus lineage, extends the geographic and stratigraphic fossil pollen record, and supports an earlier age for crown-group eucalypts.


Assuntos
Eucalyptus , Austrália , Eucalyptus/genética , Flores , Fósseis , Filogenia , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA