Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502682

RESUMO

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.

2.
Heliyon ; 10(6): e28038, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524534

RESUMO

Herbal medicinal plants have been used for centuries in traditional medicine, and it is interesting to see how modern research has identified the active compounds responsible for their therapeutic effects. The green synthesis of silver nanoparticles using herbal medicinal plants, such as Swertia chirata, is particularly noteworthy due to its antimicrobial properties. In the current study, the Swertia chirata plant was collected for the first time from the region of Murree, Punjab, Pakistan. After collection, extracts were prepared in different solvents (ethanol, methanol, chloroform, and distilled water), and silver nanoparticles were synthesized by reducing silver nitrate (AgNO3). The UV-visible spectrophotometer, SEM, and EDX were used to characterize the synthesized nanoparticles in terms of their size and shape. The phytochemical analysis of crude extract was performed to determine the presence of different kinds of phytochemicals. The antibacterial activity of plant extracts and the silver nanoparticles were then assessed using the agar well diffusion method against various pathogenic bacteria. The results showed that the plant contains several phytochemicals with remarkable antioxidant potential. The antibacterial analysis revealed that silver nanoparticles and the plant extracts exhibited a significant zone of inhibition against human pathogenic bacteria (Escherichia coli, S. capitis, B. subtilis, and Pseudomonas aeruginosa) as compared to the cefixime and norfloxacin. This implies that the nanoparticles have the potential to be used in nano-medicine applications, such as drug delivery systems, as well as for their antibacterial, antifungal, and antiviral activities. Additionally, the development and application of materials and technologies at the nanometer scale opens possibilities for the creation of novel drugs and therapies. Overall, the study highlights the promising potential of herbal medicinal plants found in Murree, Punjab, Pakistan, and green-synthesized silver nanoparticles in various fields of medicine and nanotechnology.

3.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250414

RESUMO

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

4.
Heliyon ; 9(11): e21824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034707

RESUMO

These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 µg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 µg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.

5.
Biomedicines ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371746

RESUMO

The presence of COVID-19 antibodies in the maternal circulation is assumed to be protective for newborns against SARS-CoV-2 infection. We investigated whether maternal COVID-19 antibodies crossed the transplacental barrier and whether there was any difference in the hematological parameters of neonates born to mothers who recovered from COVID-19 during pregnancy. The cross-sectional study was conducted at the Saidu Group of Teaching Hospitals, located in Swat, Khyber Pakhtunkhwa. After obtaining written informed consent, 115 healthy, unvaccinated mother-neonate dyads were included. A clinical history of COVID-19-like illness, laboratory-confirmed diagnosis, and contact history were obtained. Serum samples from mothers and neonates were tested for SARS-CoV-2 anti-receptor-binding domain (anti-RBD) IgG antibodies. Hematological parameters were assessed with complete blood counts (CBC) and peripheral blood smear examinations. The study population consisted of 115 mothers, with a mean age of 29.44 ± 5.75 years, and most women (68/115 (59.1%)) were between 26 and 35 years of age. Of these mothers, 88/115 (76.5 percent) tested positive for SARS-CoV-2 anti-RBD IgG antibodies, as did 83/115 (72.2 percent) neonatal cord blood samples. The mean levels of SARS-CoV-2 IgG antibodies in maternal and neonatal blood were 19.86 ± 13.82 (IU/mL) and 16.16 ± 12.90 (IU/mL), respectively, indicating that maternal antibodies efficiently crossed the transplacental barrier with an antibody transfer ratio of 0.83. The study found no significant difference in complete blood count (CBC) parameters between seropositive and seronegative mothers, nor between neonates born to seropositive and seronegative mothers.

6.
Malar J ; 22(1): 37, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732819

RESUMO

BACKGROUND: Border malaria is a major obstacle for the malaria elimination in Saudi Arabia. Today, the southern border of Saudi Arabia is a region where malaria cases are resurging, and malaria control is dwindling mainly due to the humanitarian crisis and the conflict in Yemen. This study analyses the current border malaria epidemiology along the southern border of Saudi Arabia from 2015 to 2018. METHODS: All reported cases maintained by the malaria elimination centres in Aledabi and Baish, Jazan Province, Saudi Arabia, from 2015 to 2018 were analysed to examine the epidemiological changes over time. Pearson's Chi-Square test of differences was utilized to assess differences between the characteristics of imported and local causes and between border cases. A logistic regression model was used to predict imported status was related to living along side of the border area. RESULTS: A total of 3210 malaria cases were reported in Baish and Aledabi malaria centres between 2015 and 2018, of which 170 were classified as local cases and 3040 were classified as imported cases. Reported malaria cases were mainly among males, within the imported cases 61.5% (1868/3039) were residents of the border areas. CONCLUSIONS: Given the complexity of cross-border malaria, creating a malaria buffer zone that covers a certain margin from both sides of the border would allow for a joint force, cross-border malaria elimination programme. To initiate a malaria elimination activity and cases reported as belonging to this zone, rather than being pushed from one country to the other, would allow malaria elimination staff to work collaboratively with local borderland residents and other stakeholders to come up with innovative solutions to combat malaria and reach malaria-free borders.


Assuntos
Malária , Masculino , Humanos , Arábia Saudita/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Iêmen , Modelos Logísticos
7.
Malar J ; 22(1): 53, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782234

RESUMO

BACKGROUND: Livelihood activities and human movements participate in the epidemiology of vector-borne diseases and influence malaria risk in elimination settings. In Saudi Arabia, where malaria transmission intensity varies geographically, it is vital to understand the components driving transmission within specific areas. In addition, shared social, behavioural, and occupational characteristics within communities may provoke the risk of malaria infection. This study aims to understand the relationship between human mobility, livelihood activities, and the risk of malaria infection in the border region of Jazan to facilitate further strategic malaria interventions. In addition, the study will complement and reinforce the existing efforts to eliminate malaria on the Saudi and Yemen border by providing a deeper understanding of human movement and livelihood activities. METHODS: An unmatched case-control study was conducted. A total of 261 participants were recruited for the study, including 81 cases of confirmed malaria through rapid diagnostic tests (RDTs) and microscopy and 180 controls in the Baish Governorate in Jazan Provinces, Saudi Arabia. Individuals who received malaria tests were interviewed regarding their livelihood activities and recent movement (travel history). A questionnaire was administered, and the data was captured electronically. STATA software version 16 was used to analyse the data. Bivariate and multivariate analyses were conducted to determine if engaging in agricultural activities such as farming and animal husbandry, recent travel history outside of the home village within the last 30 days and participating in spiritual gatherings were related to malaria infection status. RESULTS: A logistical regression model was used to investigate components associated with malaria infection. After adjusting several confounding factors, individuals who reported travelling away from their home village in the last 30 days OR 11.5 (95% CI 4.43-29.9), and those who attended a seasonal night spiritual gathering OR 3.04 (95% CI 1.10-8.42), involved in animal husbandry OR 2.52 (95% CI 1.10-5.82), and identified as male OR 4.57 (95% CI 1.43-14.7), were more likely to test positive for malaria infection. CONCLUSION: Human movement and livelihood activities, especially at nighttime, should be considered malaria risk factors in malaria elimination settings, mainly when the targeted area is limited to a confined borderland area.


Assuntos
Malária , Animais , Humanos , Masculino , Estudos de Casos e Controles , Malária/prevenção & controle , Fatores de Risco , Viagem , Criação de Animais Domésticos
8.
BMJ Open ; 3(5)2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23793668

RESUMO

OBJECTIVES: Ovale malaria is caused by two closely related species of protozoan parasite: Plasmodium ovale curtisi and Plasmodium ovale wallikeri Although clearly distinct genetically, there have been no studies comparing the morphology, life cycle or epidemiology of these parasites. We tested the hypothesis that the two species differ in the duration of latency prior to presentation with symptoms of blood-stage infection. DESIGN: PCR was used to identify P ovale curtisi and P ovale wallikeri infections among archived blood from UK malaria patients. Latency periods, estimated as the time between entry into the UK and diagnosis of malaria, were compared between the two groups. SETTING: UK National Reference Laboratory. PARTICIPANTS: None. Archived parasite material and surveillance data for 74 P ovale curtisi and 60 P ovale wallikeri infections were analysed. Additional epidemiological data were taken from a database of 1045 imported cases. OUTCOMES: None. RESULTS: No differences between the two species were identified by a detailed comparison of parasite morphology (N=9, N=8, respectively) and sex ratio (N=5, N=4) in archived blood films. The geometric mean latency period in P ovale wallikeri was 40.6 days (95% CI 28.9 to 57.0), whereas that for P ovale curtisi was more than twice as long at 85.7 days (95% CI 66.1 to 111.1; p=0.002). Further, the proportion of ovale malaria sensu lato which occurred in patients reporting chemoprophylaxis use was higher than for Plasmodium falciparum (OR 7.56; p<0.0001) or P vivax (OR 1.82; p<0.0001). CONCLUSIONS: These findings provide the first difference of epidemiological significance observed between the two parasites which cause ovale malaria, and suggest that control measures aimed at P falciparum may not be adequate for reducing the burden of malaria caused by P ovale curtisi and P ovale wallikeri.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA