Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 302(Pt B): 114046, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775338

RESUMO

This paper reviews the new progress, challenges and barriers on production of pyrolysis oil from the plastic waste. Among the different processes thermal and catalytic are the potential methods to produce oil. Since the global plastic production increased over years the accumulation of plastic waste increases. Thus, converting the waste plastics into useful energy is very essential to avoid the environmental concerns. Initially the thermal pyrolysis process and its advantage on production of pyrolysis oil were discussed. During the thermal decomposition the waste plastic had been converted into the products such as gas, crude oil and solid residues. Secondly, the catalytic process and its recent trends were discussed. In addition, the factors affecting the catalytic pyrolysis process had been evaluated. Furthermore, the optimized concentration of catalyst subjected to the higher yield of fuel with low hydrocarbon content was found. The pyrolysis oil produced from the catalytic process has higher heating values, lower density and lower viscosity compared to thermal process. In addition, the application of pyrolysis oil on the diesel engines had been discussed. The effects of pyrolysis oil on combustion and emission characteristics were observed. This review summarizes the potential advantages and barriers of both thermal and catalytic process. Further, the optimized solutions and applications of pyrolysis oil are suggested for sustainability of the process. Besides the introduction of the pyrolysis oil were viable without making major modification to the existing engine design.


Assuntos
Plásticos , Pirólise , Catálise , Hidrocarbonetos
2.
Chemosphere ; 287(Pt 3): 132285, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563769

RESUMO

Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Elétrons , Humanos , Águas Residuárias
3.
Bioresour Technol ; 344(Pt A): 126207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715344

RESUMO

In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.


Assuntos
Biocombustíveis , Água , Biomassa , Fontes Geradoras de Energia , Açúcares
4.
Chemosphere ; 287(Pt 1): 131959, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34454224

RESUMO

The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Biomassa , Metais Pesados/análise , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 296: 113194, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243094

RESUMO

The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.


Assuntos
Biocombustíveis , Lignina , Biomassa , Fontes Geradoras de Energia
6.
Chemosphere ; 281: 130878, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34022602

RESUMO

The utilization of renewable lignocellulosic biomasses for bioenergy synthesis is believed to facilitate competitive commercialization and realize affordable clean energy sources in the future. Among the pathways for biomass pretreatment methods that enhance the efficiency of the whole biofuel production process, the combined microwave irradiation and physicochemical approach is found to provide many economic and environmental benefits. Several studies on microwave-based pretreatment technologies for biomass conversion have been conducted in recent years. Although some reviews are available, most did not comprehensively analyze microwave-physicochemical pretreatment techniques for biomass conversion. The study of these techniques is crucial for sustainable biofuel generation. Therefore, the biomass pretreatment process that combines the physicochemical method with microwave-assisted irradiation is reviewed in this paper. The effects of this pretreatment process on lignocellulosic structure and the ratio of achieved components were also discussed in detail. Pretreatment processes for biomass conversion were substantially affected by temperature, irradiation time, initial feedstock components, catalyst loading, and microwave power. Consequently, neoteric technologies utilizing high efficiency-based green and sustainable solutions should receive further focus. In addition, methodologies for quantifying and evaluating effects and relevant trade-offs should be develop to facilitate the take-off of the biofuel industry with clean and sustainable goals.


Assuntos
Biocombustíveis , Micro-Ondas , Biomassa , Lignina
7.
Chemosphere ; 277: 130274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33770690

RESUMO

The threat of environmental pollution caused by spilled oil is rapidly increasing along with the expansion of oil exploration, the development of maritime activities and industrial growth. Oil spill incidents usually affect seriously the ecosystem and human life. Therefore, the treatment and recovery of the oil spill have been considered as an ultra-important issue to protect the environment and to minimize its negative impacts on socio-economic activities. Among methods of oil spill recovery, porous materials have emerged as potential absorbents possessing the capacity of absorbing spilled oil at a fast rate, high adsorption capacity, good selectivity, and high reusability. In this review paper, two types of polymer-based porous absorbents modified surface and structure were introduced for the treatment strategy of the oil-polluted water. In addition, the absorption mechanism and factors affecting the adsorption capacity for oils and organic solvents were thoroughly analyzed. More importantly, characteristics of polymer-based porous materials were discussed in detail based on microstructure analysis, absorption efficiency, and reusability. In general, this paper has provided an overview and a comprehensive assessment of the use of advanced polymer-based porous materials for the treatment of oil-polluted water, although the impacts of environmental factors such as wind, wave, and temperature should be further investigated in the future.


Assuntos
Poluição por Petróleo , Polímeros , Ecossistema , Humanos , Poluição por Petróleo/análise , Porosidade , Água
8.
Environ Sci Pollut Res Int ; 28(5): 4918-4950, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230799

RESUMO

Currently, the considerable decline in fossil fuel resources and the high rise in vehicle emissions have prompted researchers and governments to formulate strategies for sustainable energy development. In addition to imposing strict laws, promoting sustainable energy sources such as the development of new types of non-fossil fuels has been considered a suitable direction for the roadmap to healing the Earth's environment. Biomass sources have affirmed huge potentials in the production of biofuels. In the pathway of searching renewable biofuels, it is found that that 2,5-dimethylfuran (DMF) can become a promising fuel because it is synthesized from lignocellulose biomass, which is an available feedstock for the production of prospective fuels. Indeed, recent review studies have focused in great detail on engine performance evaluation using DMF but seemed to have gaps in emission characteristics. In this work, the controversial issues of emissions from spark and compression ignition engines during the DMF combustion were completely assessed. Indeed, the mechanism of formation and oxidation of DMF compounds during combustion was clearly described to serve as the basis for analyzing and comparing the pollution emission behavior of different fuels. More importantly, gaseous emissions, PM characteristics, and soot tendency from spark and compression ignition engines were thoroughly evaluated on the basis of the experimental and numerical data. In general, DMF has shown outstanding advantages upon emissions compared to fossil fuels; however, the impacts of DMF on the engine durability and fuel system should be further investigated to have a comprehensive analysis of this biofuel class.


Assuntos
Biocombustíveis , Gasolina , Furanos , Estudos Prospectivos , Emissões de Veículos
9.
J Clean Prod ; 274: 122877, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32834567

RESUMO

The rapid development and implementation of smart and IoT (Internet of Things) based technologies have allowed for various possibilities in technological advancements for different aspects of life. The main goal of IoT technologies is to simplify processes in different fields, to ensure a better efficiency of systems (technologies or specific processes) and finally to improve life quality. Sustainability has become a key issue for population where the dynamic development of IoT technologies is bringing different useful benefits, but this fast development must be carefully monitored and evaluated from an environmental point of view to limit the presence of harmful impacts and ensure the smart utilization of limited global resources. Significant research efforts are needed in the previous sense to carefully investigate the pros and cons of IoT technologies. This review editorial is partially directed on the research contributions presented at the 4th International Conference on Smart and Sustainable Technologies held in Split and Bol, Croatia, in 2019 (SpliTech 2019) as well as on recent findings from literature. The SpliTech2019 conference was a valuable event that successfully linked different engineering professions, industrial experts and finally researchers from academia. The focus of the conference was directed towards key conference tracks such as Smart City, Energy/Environment, e-Health and Engineering Modelling. The research presented and discussed at the SpliTech2019 conference helped to understand the complex and intertwined effects of IoT technologies on societies and their potential effects on sustainability in general. Various application areas of IoT technologies were discussed as well as the progress made. Four main topical areas were discussed in the herein editorial, i.e. latest advancements in the further fields: (i) IoT technologies in Sustainable Energy and Environment, (ii) IoT enabled Smart City, (iii) E-health - Ambient assisted living systems (iv) IoT technologies in Transportation and Low Carbon Products. The main outcomes of the review introductory article contributed to the better understanding of current technological progress in IoT application areas as well as the environmental implications linked with the increased application of IoT products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA