Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 14(1): 708, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184716

RESUMO

Epilepsy frequently develops as a result of brain insult; however, there are no tools allowing to predict which patients suffering from trauma will eventually develop epilepsy. microRNAs are interesting candidates for biomarkers, as several of them have been described to change their levels in the brains, and in the plasma of epileptic subjects. This study was conducted to evaluate the usefulness of plasma miRNAs as epileptogenesis/epilepsy biomarkers. In our studies, we used a rat model of temporal lobe epilepsy. An epileptogenic insult was status epilepticus evoked by stimulation of the left lateral nucleus of the amygdala. Next, animals were continuously video and EEG monitored for 3 months. Blood was collected at 14, 30, 60, and 90 days after stimulation. Blood plasma was separated and miRNA levels were analyzed. We compared miRNA levels between sham-operated and stimulated animals, and between animals with high and low numbers of seizures. We propose three miRNAs that could be biomarkers of epilepsy: miR-671, miR-9a-3p and miR-7a-5p. According to us, miR-206-5p is a potential biomarker of epileptogenesis, and miR-221-3p is a potential biomarker of epilepsy severity. We think that these five miRNAs can be considered in the future as potential treatment targets.


Assuntos
MicroRNA Circulante , Epilepsia , MicroRNAs , Humanos , Animais , Ratos , MicroRNAs/genética , Epilepsia/diagnóstico , Epilepsia/genética , Plasma , Biomarcadores
2.
Neurochem Res ; 46(9): 2463-2472, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173119

RESUMO

Tweety-homolog 1 protein (Ttyh1) is abundantly expressed in neurons in the healthy brain, and its expression is induced under pathological conditions. In hippocampal neurons in vitro, Ttyh1 was implicated in the regulation of primary neuron morphology. However, the mechanisms that underlie transcriptional regulation of the Ttyh1 gene in neurons remain elusive. The present study sought to identify the promoter of the Ttyh1 gene and functionally characterize cis-regulatory elements that are potentially involved in the transcriptional regulation of Ttyh1 expression in rat dissociated hippocampal neurons in vitro. We cloned a 592 bp rat Ttyh1 promoter sequence and designed deletion constructs of the transcription factors specificity protein 1 (Sp1), E2F transcription factor 3 (E2f3), and achaete-scute homolog 1 (Ascl1) that were fused upstream of a luciferase reporter gene in pGL4.10[luc2]. The luciferase reporter gene assay showed the possible involvement of Ascl1, Sp1, and responsive cis-regulatory elements in Ttyh1 expression. These findings provide novel information about Ttyh1 gene regulation in neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição E2F3/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Transcrição E2F3/genética , Embrião de Mamíferos , Feminino , Camundongos , Gravidez , Ratos Wistar , Alinhamento de Sequência , Fator de Transcrição Sp1/genética
3.
Sci Rep ; 11(1): 8665, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883658

RESUMO

The present study performed a detailed analysis of behavior in a rat model of epilepsy using both established and novel methodologies to identify behavioral impairments that may differentiate between animals with a short versus long latency to spontaneous seizures and animals with a low versus high number of seizures. Temporal lobe epilepsy was induced by electrical stimulation of the amygdala. Rats were stimulated for 25 min with 100-ms trains of 1-ms biphasic square-wave pluses that were delivered every 0.5 s. Electroencephalographic recordings were performed to classify rats into groups with a short latency (< 20 days, n = 7) and long latency (> 20 days, n = 8) to the first spontaneous seizure and into groups with a low number of seizures (62 ± 64.5, n = 8) and high number of seizures (456 ± 185, n = 7). To examine behavioral impairments, we applied the following behavioral tests during early and late stages of epilepsy: behavioral hyperexcitability, open field, novel object exploration, elevated plus maze, and Morris water maze. No differences in stress levels (e.g., touch response in the behavioral hyperexcitability test), activity (e.g., number of entries into the open arms of the elevated plus maze), or learning (e.g., latency to find the platform in the Morris water maze test during training days) were observed between animals with a short versus long latency to develop spontaneous seizures or between animals with a low versus high number of seizures. However, we found a higher motor activity measured by higher number of entries into the closed arms of the elevated plus maze at week 26 post-stimulation in animals with a high number of seizures compared with animals with a low number of seizures. The analysis of the Morris water maze data categorized the strategies that the animals used to locate the platform showing that the intensity of epilepsy and duration of epileptogenesis influenced swimming strategies. These findings indicate that behavioral impairments were relatively mild in the present model, but some learning strategies may be useful biomarkers in preclinical studies.


Assuntos
Comportamento Animal , Epilepsia do Lobo Temporal/psicologia , Animais , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/etiologia , Comportamento Exploratório , Masculino , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Fenótipo , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia
4.
Cell Rep ; 26(10): 2792-2804.e6, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840898

RESUMO

VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.


Assuntos
Epilepsia/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/patologia , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA