Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Food Sci Nutr ; 12(6): 4223-4232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873466

RESUMO

The contamination of feed and food by heavy metals represents a significant concern for the health of both animals and humans. This study investigates the impact of geographical location on heavy metal distribution in dairy cattle feeds sourced from Free State and Limpopo, South Africa (SA). A total of 70 feed samples (40 from Free State and 30 from Limpopo) were collected from 2018 to 2019 and analyzed for heavy metals, including cadmium (Cd), arsenic (As), copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr), using inductively coupled plasma mass spectrometry (ICP-MS). Our findings revealed the presence of Cr, Cu, and Zn in the feeds, but at levels below the FAO/WHO permissible limits. Additionally, As, Cd, and Pb concentrations in the feeds were below the Limit of Detections (LODs). Generally, Cr concentrations (0.032-0.454 mg/kg) identified in the Free State samples were lower than those found in Limpopo (0.038-1.459 mg/kg), while the levels of Cu (0.092-4.898 mg/kg) and Zn (0.39-13.871 mg/kg) recorded in the Free State samples were higher than those from Limpopo [(0.126-3.467 mg/kg) and (0.244-13.767 mg/kg), respectively]. According to independent sample t-tests, Cu and Zn levels were substantially higher (p ≤ .05) in Free State feeds compared to Limpopo, while Limpopo feeds exhibited significantly higher (p ≤ .05) Cr concentrations than Free State feeds. Despite the low recorded heavy metal levels, regular monitoring of these elements in cow diets across all SA provinces is essential for ensuring the well-being of animals and humans.

2.
Food Chem ; 456: 140068, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878549

RESUMO

This study investigated the application of a hybrid nanocomposite of tin oxide nanorods (SnO2 NRs) and graphene oxide (GO) for the chemoresistive detection of some volatile compounds (hexanal, benzaldehyde, octanal, 1-octanol, and ethyl acetate vapours) emitted by Aspergillus flavus under simulated conditions. The synthesised materials were characterised using various analytical techniques, including high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Three sensors were fabricated: individual nanomaterials (i.e., SnO2 and GO) and composites (SnO2-GO). The results showed that SnO2 NRs had limited sensitivity as a sensor, while GO-based sensors responded to various analyte vapours. However, the incorporation of SnO2 NRs into GO layers resulted in synergistic effects and improved sensor performance. The sensors' sensitivity, selectivity, recovery, and response times were quantitatively determined from the sensors' response curves. The nanocomposite sensor demonstrated superior sensitivity and selectivity for analyte vapours with acceptable response and recovery times. In addition, the sensor was insensitive to humidity and showed robust performance up to 62% RH, although sensor drift occurred at 70% RH. This study highlights the promising potential of using SnO2 NRs-GO composite-based sensor for sensitive and selective detection of analyte vapours, which has significant implications for food safety and environmental monitoring applications.

3.
Sci Rep ; 14(1): 11643, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773169

RESUMO

Mycotoxin contamination of agricultural commodities is a global public health problem that has remained elusive to various mitigation approaches, particularly in developing countries. Climate change and its impact exacerbates South Africa's vulnerability to mycotoxin contamination, and significantly threatens its's food systems, public health, and agro-economic development. Herein we analyse sixteen years (2005/2006-2020/2021) of annual national meteorological data on South Africa which reveals both systematic and erratic variability in critical climatic factors known to influence mycotoxin contamination in crops. Within the same study period, data on fumonisin (FB) monitoring show clear climate-dependent trends. The strongest positive warming trend is observed between 2018/2019 and 2019/2020 (0.51 °C/year), and a strong positive correlation is likewise established between FB contamination and temperature (r ranging from 0.6 to 0.9). Four machine learning models, viz support vector machines, eXtreme gradient boosting, random forest, and orthogonal partial least squares, are generalized on the historical data with suitable performance (RMSE as low as 0.00). All the adopted models are able to predict future FB contamination patterns with reasonable precision (R2 ranging from 0.34 to 1.00). The most important model feature for predicting average FB contamination (YA) is the historical pattern of average FB contamination in maize within the region (ΣFBs_avg). The two most significant features in modelling maximum FB contamination (YM) are minimum temperature from the CMIP6 data (Pro_tempMIN) and observed precipitation from the CRU data (O_prep). Our study provides strong evidence of the impact of climate change on FB in South Africa and reiterates the significance of machine learning modelling in predicting mycotoxin contamination in light of changing climatic conditions, which could facilitate early warnings and the adoption of relevant mitigation measures that could help in mycotoxin risk management and control.


Assuntos
Mudança Climática , Fumonisinas , Zea mays , África do Sul , Fumonisinas/análise , Zea mays/microbiologia , Clima , Contaminação de Alimentos/análise , Aprendizado de Máquina , Produtos Agrícolas
4.
Food Chem (Oxf) ; 8: 100197, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38468716

RESUMO

This study identified and monitored the levels of aflatoxins (B1 and B2) produced by Aspergillus flavus isolate VKMN22 (OP355447) in maize samples sourced from a local shop in Johannesburg, South Africa. Maize samples underwent controlled incubation after initial rinsing, and isolates were identified through morphological and molecular methods. In another experiment, autoclaved maize grains were intentionally re-inoculated with the identified fungal isolate using spore suspension (106 spore/mL), after which 1 g of the contaminated maize sample was inoculated on PDA media and cultured for seven days. The aflatoxin concentrations in the A. flavus contaminated maize inoculated on culture media was monitored over seven weeks and then measured using liquid chromatography-mass spectroscopy (LC-MS). Results confirmed the successful isolation of A. flavus strain VKMN22 with accession number OP355447, which consistently produced higher levels of AFB1 compared to AFB2. AF concentrations increased from week one to five, then declined in week six and seven. AFB1 levels ranged from 594.3 to 9295.33 µg/kg (week 1-5) and then reduced from 5719.67 to 2005 µg/kg in week six and seven), while AFB2 levels ranged from 4.92 to 901.67 µg/kg (weeks 1-5) and then degraded to 184 µg/kg in week six then 55.33 µg/kg (weeks 6-7). Levene's tests confirmed significantly higher mean concentrations of AFB1 compared to AFB2 (p ≤ 0.005). The study emphasizes the importance of consistent biomonitoring for a dynamic understanding of AF contamination, informing accurate prevention and control strategies in agricultural commodities thereby safeguarding food safety.

5.
Heliyon ; 10(2): e24435, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312698

RESUMO

Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 µg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 µg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38315775

RESUMO

Garri is a granular, starchy food prepared by the fermentation of mashed cassava. Hydrogen cyanide (HCN) and mycotoxins are contaminants in certain foods at different points along the food value chain. The incidence and contamination levels of HCN and multi-mycotoxins in garri from five agroecological zones of Nigeria were determined using a spectrophotometric method and ultra-high-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS), respectively. The health risk associated with the consumption of contaminated garri was assessed. The health risk assessment model was used to calculate the dietary exposure of humans to the mycotoxins in garri. This was done by estimating the daily intake (EDI), the percentage tolerable daily intake (%TDI), the annual hepatocellular carcinoma (HCC) cases attributable to exposure to aflatoxins (AFs) in garri, as well as the HCC risk. The average intake of garri was estimated at 0.303 kg/day for a Nigerian adult. The incidence of HCN was 98.3% (0.056-2.463 mg/kg), and fermentation reduced the HCN level in garri more than other processing steps. The twenty-one mycotoxins identified and quantified were all within maximum levels, as applicable to those that are regulated by the EU. The %TDI for the other mycotoxins, with the exception of AFs, showed no alarming health risk with garri consumption. Annual HCC cases resulting from AF in garri were estimated at 10-60 cases for HBsAg + ve individuals and 4-23 cases for HBsAg - ve individuals based on 8.1% hepatitis B virus (HBV) incidence. Results further revealed no interdependence between HCN levels and mycotoxin content. This work suggests an unlikely chance of acute toxicity from HCN and major mycotoxins from a garri-based diet in Nigeria. Hence, it is recommended that concerned regulatory bodies maintain the existing permissible limits for HCN in Garri.


Assuntos
Aflatoxinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Micotoxinas , Adulto , Humanos , Micotoxinas/análise , Cianeto de Hidrogênio , Espectrometria de Massas em Tandem , Antígenos de Superfície da Hepatite B , Incidência , Neoplasias Hepáticas/epidemiologia , Aflatoxinas/análise , Contaminação de Alimentos/análise , Medição de Risco
7.
Heliyon ; 10(1): e23025, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205294

RESUMO

Contamination with mycotoxins has been a worldwide food safety concern for several decades, and food processing has been suggested as a potential method to mitigate their presence. In this study, the influence of traditional dehulling (TD) on the mycotoxin reduction and metabolites profile of fermented white maize products obtained via natural and three controlled fermentation methods (involving Lactobacillus fermentum, Lactobacillus plantarum, and their mixed cultures) was examined. Gas chromatography coupled with high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were employed. TD brought the levels of fumonisin B1 (FB1) and B2 (FB2) in the white maize below the regulatory limit set by the European Union (EU) for maize consumed by humans. While TD increased the concentration of several mycotoxins in the fermented maize products obtained from other studied fermentation methods, it primarily reduced aflatoxin B1 (AFB1), FB1, deoxynivalenol, and 15-acetyldeoxynivalenol in the L. plantarum-fermented products. By tempering the dehulled maize, a solid-state fermentation process began. This was used in TD to make it easier to remove the pericarp. GC-HR-TOF-MS metabolomics revealed that TD brought about the generation of 12 additional compounds in the dehulled maize though some metabolites in the whole maize were lost/biotransformed. The fermented dehulled maize products obtained from the four studied fermentation procedures contained fewer compounds than the fermented whole maize products. Overall, the analysis showed that all fermented maize (whole and dehulled) produced had varied nutritional metabolites and mycotoxin concentrations below the EU maximum level, except for fermented maize obtained from mixed strains (AFB1 + AFB2 > 4.0 g/kg).

8.
Sci Rep ; 13(1): 11755, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474706

RESUMO

Artificial neural networks (ANNs) have in recent times found increasing application in predictive modelling of various food processing operations including fermentation, as they have the ability to learn nonlinear complex relationships in high dimensional datasets, which might otherwise be outside the scope of conventional regression models. Nonetheless, a major limiting factor of ANNs is that they require quite a large amount of training data for better performance. Obtaining such an amount of data from biological processes is usually difficult for many reasons. To resolve this problem, methods are proposed to inflate existing data by artificially synthesizing additional valid data samples. In this paper, we present a generative adversarial network (GAN) able to synthesize an infinite amount of realistic multi-dimensional regression data from limited experimental data (n = 20). Rigorous testing showed that the synthesized data (n = 200) significantly conserved the variances and distribution patterns of the real data. Further, the synthetic data was used to generalize a deep neural network. The model trained on the artificial data showed a lower loss (2.029 ± 0.124) and converged to a solution faster than its counterpart trained on real data (2.1614 ± 0.117).


Assuntos
Momordica charantia , Vitis , Fermentação , Bebidas , Redes Neurais de Computação
9.
Toxins (Basel) ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828441

RESUMO

This study evaluated the impact of seasonal and geographical variations on the toxigenicity of Aspergillus and Fusarium strains previously isolated from smallholder dairy cattle feeds and feedstuffs sampled during summer and winter in the Free State and Limpopo provinces of South Africa (SA). In total, 112 potential toxigenic fungal species were obtained and determined for their capability to produce mycotoxins on solid Czapek Yeast Extract Agar (CYA); followed by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Our result revealed that 41.96% of the fungal species produced their respective mycotoxins, including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and zearalenone (ZEN), with higher levels of AFB1 (0.22 to 1045.80 µg/kg) and AFB2 (0.11 to 3.44 µg/kg) produced by fungal species isolated from summer samples than those in winter [(0.69 to 14.44 µg/kg) and (0.21 to 2.26 µg/kg), respectively]. The same pattern was also observed for AFB1 and AFB2 in Limpopo (0.43 to 1045.80 µg/kg and 0.13 to 3.44 µg/kg) and Free State (0.22 to 576.14 µg/kg and 0.11 to 2.82 µg/kg), respectively. More so, ZEN concentrations in summer (7.75 to 97.18 µg/kg) were higher than in winter (5.20 to 15.90 µg/kg). A similar observation was also noted for ZEN in Limpopo (7.80 to 97.18 µg/kg) and Free State (5.20 to 15.90 µg/kg). These findings were confirmed via Welch and Brown-Forsythe tests with significantly (p ≤ 0.05) higher mycotoxin levels produced by fungal strains obtained in samples during summer than those in winter. In contrast, the concentrations of mycotoxins produced by the fungal species from both provinces were not significantly (p > 0.05) different.


Assuntos
Fusarium , Micotoxinas , Zearalenona , Animais , Bovinos , Cromatografia Líquida , Estações do Ano , África do Sul , Espectrometria de Massas em Tandem/métodos , Aspergillus , Micotoxinas/análise , Zearalenona/análise , Ração Animal/análise , Contaminação de Alimentos/análise
10.
J Food Sci Technol ; 60(1): 190-199, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618047

RESUMO

This study investigated the effect of germination time (0, 24, 48 and 72 h) on the physicochemical characteristics, in vitro starch digestibility and microstructural changes in Bambara groundnut starch. The starch yield, lightness (L*) value, amylose content and resistant starch contents of isolated starches decreased significantly (p ≤ 0.05) with increasing germination time. Scanning electron microscopy revealed that starch from raw and germinated Bambara grains were smooth with no evidence of starch degradation and were mainly oval shaped, with some granule's irregular and kidney shaped. Water absorption capacity (1.33-1.90 g/g), swelling power (2.12-16.53 g/g), solubility index (1.14-13.04 g/g), and dispersibility (75.92-86.47%) greatly increased as germination timed increased. Germination did not alter the X-ray diffraction pattern (Type-A) but increased the relative crystallinity of the starches. The peak gelatinization temperatures (73.23-73.91 °C) of starch from germinated Bambara were significantly higher than native starch (72.81 °C). Native starch and starch from germinated Bambara grains had substantially high proportion of resistant starch (approx. 73%) and high pasting temperatures (approx. 88 °C). Conclusively, germination significantly changed starch structure at molecular level and impacted functionality.

11.
J Fungi (Basel) ; 8(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422014

RESUMO

This study investigated 65 (35 in summer and 30 in winter) smallholder dairy cattle feeds from Free State and Limpopo provinces in South Africa from 2018 to 2019 for fungal contamination and assessed the impacts of seasonal variation on fungal contamination levels, isolation frequency, and diversity. Samples were examined for fungal contamination using macro- and microscopic approaches, and their identities were confirmed by molecular means. A total of 217 fungal isolates from 14 genera, including Aspergillus, Fusarium, and Penicillium, were recovered from feeds from both seasons. The most prevalent fungal species recovered were A. fumigatus and P. crustosum. Mycological analyses showed that 97% of samples were contaminated with one or more fungal isolates, with the summer fungal mean level (6.1 × 103 to 3.0 × 106 CFU/g) higher than that of feeds sampled during winter (mean level: 1.1 × 103 to 4.1 × 105 CFU/g). Independent sample t-test revealed that the isolation frequencies of the genera Aspergillus and Fusarium were significantly (p ≤ 0.05) higher in summer than winter, while Penicillium prevalence in both seasons was not statistically (p > 0.05) different. Furthermore, the Shannon−Weiner diversity index (H') revealed a higher fungal diversity in summer (H' = 2.8) than in winter (H' = 2.1). This study on fungal contamination could be used for future fungal control and mycotoxin risk management in South Africa.

12.
Toxins (Basel) ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287980

RESUMO

Bacterial secondary metabolites play a major role in the alleviation of diseases; however, the cytotoxicity of other metabolites cannot be ignored as such metabolites could be detrimental to human cells. Three Staphylococci strains Staphylococcus aureus, staphylococcus epidermidis and staphylococcus saprophyticus were used in the experiments. These strains are well known to cause hospital and community-acquired infections. Secondary metabolites from S. aureus isolated from milk of cows with clinical features of mastitis (swollen udders and the production of watery clotted milk), S. saprophyticus (ATCC 35552), and S. epidermidis (ATCC 51625) were exposed to a minimal medium then screened using Gas Chromatography High-Resolution Time-of-flight Mass Spectrometry (GC-HRTOF-MS) and identified with Nuclear Magnetic Resonance (NMR). From S. epidermidis, two compounds were isolated: oleamide and methyl palmitate; three from S. aureus, including fluoranthene, 3-methyl-2-phenyl-1H-pyrrole, and cyclo(L-Leu-L-Propyl); while S. saprophyticus yielded succinic acid, 1,2,6-hexantriol, veratramine, and 4-methyl-pentyl-amine. The secondary metabolites were tested for cytotoxicity using the Vero cell line. Fluoranthene exhibited toxicity with an LC50 of 0.0167 mg/mL to Vero cells, while the other metabolites did not. Methyl palmitate was the least toxic of all of the metabolites. The results imply that none of the compounds, except fluoranthene, pose any danger to human cells.


Assuntos
Infecções Estafilocócicas , Staphylococcus , Chlorocebus aethiops , Feminino , Bovinos , Humanos , Animais , Staphylococcus/metabolismo , Staphylococcus aureus , Células Vero , Ácido Succínico/metabolismo , Infecções Estafilocócicas/microbiologia , Leite/microbiologia , Staphylococcus epidermidis , Aminas , Pirróis
13.
Fungal Biol Biotechnol ; 9(1): 15, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307838

RESUMO

BACKGROUND: Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. RESULTS: The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. CONCLUSION: Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.

14.
Mycotoxin Res ; 38(4): 243-252, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35922686

RESUMO

This study reports levels of multiple mycotoxins across Nigeria's six agro-ecological zones and corresponding levels of natural anti-fungal phytochemicals present in pearl millet (PM). 220 representative composite samples of PM were collected for mycotoxin analysis using ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS), and 24 were randomly selected for determination of metabolites using gas chromatography-high resolution time of flight-mass spectrometry (GC-HRTOF-MS). In total, 15 mycotoxins were detected, all with levels below the European Union (EU) permissible limits and level of aflatoxins only up to 1.34 µg/kg. This is in sharp contrast to high levels of mycotoxins reported in maize samples from the same agroecological zones. Phytochemical analysis of the same samples identified a total of 88 metabolites, 30 of which are known anti-fungal properties from other previously published studies. The most common of these include methyl ester, bis (2-ethylhexyl) phthalate, and ç-tocopherol. The number of anti-fungal metabolites recovered from each sample ranged from 3 to 17 and varied widely in both number and composition across the agroecological zones. The anti-fungal metabolites may probably make PM less susceptible to fungal proliferation compared to other grains. Hence, it is worth exploring for possible sources of biological control products from PM.


Assuntos
Aflatoxinas , Micotoxinas , Pennisetum , Micotoxinas/análise , Pennisetum/microbiologia , Nigéria , Compostos Fitoquímicos , Tocoferóis , Ésteres
15.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771110

RESUMO

This study aimed to investigate the kinetics of phenolic compound modification during the fermentation of maize flour at different times. Maize was spontaneously fermented into sourdough at varying times (24, 48, 72, 96, and 120 h) and, at each point, the pH, titratable acidity (TTA), total soluble solids (TSS), phenolic compounds (flavonoids such as apigenin, kaempferol, luteolin, quercetin, and taxifolin) and phenolic acids (caffeic, gallic, ferulic, p-coumaric, sinapic, and vanillic acids) were investigated. Three kinetic models (zero-, first-, and second-order equations) were used to determine the kinetics of phenolic modification during the fermentation. Results obtained showed that fermentation significantly reduced pH, with a corresponding increase in TTA and TSS. All the investigated flavonoids were significantly reduced after fermentation, while phenolic acids gradually increased during fermentation. Among the kinetic models adopted, first-order (R2 = 0.45-0.96) and zero-order (R2 = 0.20-0.82) equations best described the time-dependent modifications of free and bound flavonoids, respectively. On the other hand, first-order (R2 = 0.46-0.69) and second-order (R2 = 0.005-0.28) equations were best suited to explain the degradation of bound and free phenolic acids, respectively. This study shows that the modification of phenolic compounds during fermentation is compound-specific and that their rates of change may be largely dependent on their forms of existence in the fermented products.


Assuntos
Fermentação , Farinha , Fenóis/química , Zea mays/química , Biotransformação , Fenômenos Químicos , Flavonoides/química , Concentração de Íons de Hidrogênio , Hidroxibenzoatos/química , Cinética , Fenóis/análise , Análise de Componente Principal , Solubilidade
16.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299560

RESUMO

Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.


Assuntos
Imãs/química , Micotoxinas/isolamento & purificação , Nanoestruturas/química , Praguicidas/isolamento & purificação , Preparações Farmacêuticas/isolamento & purificação , Extração em Fase Sólida/métodos , Animais , Poluentes Ambientais/análise , Poluentes Ambientais/isolamento & purificação , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Humanos , Micotoxinas/análise , Praguicidas/análise , Preparações Farmacêuticas/análise , Extração em Fase Sólida/instrumentação
17.
Biotechnol Genet Eng Rev ; 37(1): 30-63, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34309495

RESUMO

Moving forward from 2020, Africa faces an eminent challenge of food safety and security in the coming years. The World Food Programme (WFP) of the United Nations (UN) estimates that 20% of Africa's population of 1.2 billion people face the highest level of undernourishment in the world, likely to worsen due to COVID-19 pandemic that has brought the entire world to its knees. Factors such as insecurity and conflict, poverty, climate change and population growth have been identified as critical contributors to the food security challenges on the continent. Biotechnological research on Genetically Modified Organisms (GMOs) provides a range of opportunities (such as increased crop yields, resistance to pests and diseases, enhanced nutrient composition and food quality) in addressing the hunger, malnutrition and food security issues on the continent. However, the acceptance and adoption of GMOs on the continent has been remarkably slow, perhaps due to contrasting views about the benefits and safety concerns associated with them. With the reality of food insecurity and the booming population in Africa, there is an eminent need for a more pragmatic position to this debate. The present review presents an overview of the current situation of food safety and security and attempts to reconcile major viewpoints on GMOs research considering the current food safety and security crisis in the African continent.


Assuntos
Segurança Alimentar , Abastecimento de Alimentos , Organismos Geneticamente Modificados , África , Agricultura , Animais , Biotecnologia , COVID-19 , Produtos Agrícolas , Secas , Política de Saúde , Humanos , Fome , Inseticidas , Desnutrição/epidemiologia , Praguicidas , Plantas Geneticamente Modificadas
18.
Int J Biol Macromol ; 184: 678-688, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174303

RESUMO

Native starches are not suitable for industrial use and must be modified for improved functionality. In this study, the effect of moisture preconditioning and infrared heating time on physicochemical properties of cowpea starch was investigated using a two-factor central composite rotatable design. Factors (moisture levels:10-40 g/100 g starch and infrared heating time:10-60 min) with their corresponding α mid-point values resulted in 13 experimental runs. Selected functional and pasting properties were determined as response variables. Starch samples produced under optimized conditions were compared with corn starch and their physicochemical properties determined. Except for pasting temperature, cowpea starch prepared using the optimal conditions (moisture: 46.21 g/100 g starch, dry basis and heating time of 32.88 min) had higher functional and pasting properties compared with the native cowpea starch. Infrared heating significantly reduced the gelatinization temperatures of cowpea starch but did not significantly change that of the corn starch. The crystallinity and double-helical order structure of moisture conditioned cowpea starch also reduced after modification. Cowpea starch showed a bigger granule size, higher swelling power but lower water absorption capacities and pasting properties compared with the control. The infrared heating process is a novel and promising modification method for improving the swelling properties of starch.


Assuntos
Amido/química , Vigna/química , Água/química , Cristalografia por Raios X , Temperatura Alta , Estrutura Molecular , Solubilidade , Viscosidade , Difração de Raios X
19.
Environ Sci Pollut Res Int ; 28(42): 59687-59695, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34145539

RESUMO

A total of 80 rooibos tea samples from a range of brands were purchased from various registered retail shops in South Africa. The samples were bought during 2019 winter (40) and summer (40) period which are classified as 6 natural rooibos, 18 herbal rooibos samples, and 16 flavor rooibos samples and subjected for heavy metal analysis such as chromium (Cr), iron (Fe), arsenic (As), cadmium (Cd), and lead (Pb) using inductively coupled plasma mass spectrometer (ICP-MS). Human health risks were determined by estimating the daily intake non-cancer hazard quotient (THQ) and hazard index (HI) via oral exposure to toxic elements based on daily tea consumption. The concentration range of the determined heavy metals in rooibos tea samples were as follows: Cr (0.17-11.98 mg/kg), Fe (31-450 mg/kg), As (ND-0.51 mg/kg), Cd (0.09-0.17 mg/kg), and Pb (0.06-2.73 mg/kg). Cr was found in higher amount when compared to the World Health Organization (WHO) permissive limit (1.3 mg/kg). The concentrations of all studied heavy metals during winter and summer period were compared using two-way Anova, and no significant differences (p = 0.832) were observed for the two seasons. Both the target risk quotient (THQ) and the hazard index (HI) levels in all analyzed tea were well below 1, implying that intake of rooibos tea with analyzed heavy metals should not cause a threat to human health. On the other hand, the continuous intake due to the high concentrations of trace metals such as Cr may pose a serious chronic health risk due to accumulation in body tissues over time. The study, therefore, suggests constant monitoring of these heavy metals in teas in order to limit the risk of exceeding the permissive limits.


Assuntos
Aspalathus , Metais Pesados , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , África do Sul , Chá
20.
Data Brief ; 36: 107102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026987

RESUMO

This data article reports the untargeted metabolite profile of whole grain sorghum (Sorghum bicolor L.) and fermented ting samples obtained using two strains of Lactobacillus fermentum. The sorghum grains were obtained from Agricol Johannesburg (South Africa) and fermentation was done at 34 °C for 24 h. Controlled fermentation with two Lactobacillus fermentum strains (L. fermentum FUA 3165 and L. fermentum FUA 3321), was done using the strains singly and in combination. The samples obtained thereafter were freeze-dried and acetonitrile/methanol/water (v/v/v) were used as extraction solvent, before analyses on a gas chromatography high resolution time of flight mass spectrometry (GC-HRTOF-MS) system. Data obtained showed the presence of different compounds, classified into metabolite groups such as acids, alcohols, benzenes, furan, esters, hydrocarbons, terpenes, phytosterols, etc., with their retention time, molecular formula, observed mass and average peak areas reported herein. These data can be used for finding biomarkers for sorghum and their derived fermented products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA