Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(11): 10545-10554, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969393

RESUMO

Benchtop nuclear magnetic resonance (NMR) spectroscopy has enabled the monitoring and optimization of chemical transformations while simultaneously providing kinetic, mechanistic, and structural insight into reaction pathways with quantitative precision. Moreover, benchtop NMR proton lock capabilities further allow for rapid and convenient monitoring of various organic reactions in real time, as the use of deuterated solvents is not required. The complementary role of 19F NMR-based kinetic monitoring in the fluorination of bioactive compounds has many benefits in the drug discovery process since fluorinated motifs additionally improve drug pharmacology. In this study, 19F NMR spectroscopy was utilized to monitor the synthesis of novel trifluorinated analogs of monastrol, a small molecule dihydropyrimidinone kinesin-Eg5 inhibitor, and to probe the mechanism of the Biginelli cyclocondensation, a multicomponent reaction used to synthesize dihydropyrimidinone and tetrahydropyrimidinones through a Bronsted- or Lewis-acid catalyzed cyclocondensation between ethyl acetoacetate, thiourea, and an aryl aldehyde. In the present study, a trifluorinated ketoester serves a dual purpose as being the source of the trifluoromethyl group in our fluorinated dihydropyrimidinones and as a spectroscopic handle for real-time reaction monitoring and tracking of reactive intermediates by 19F NMR. Further, upon extending this workflow to a diverse array of 3- and 4-substituted aryl aldehydes, we were able to derive Hammett linear free energy relationships (LFER) to determine stereoelectronic effects of para- and meta-substituted aryl aldehydes to corresponding reaction rates and mechanistic routes. In addition, we used density functional theory (DFT) calculations to corroborate our experimental results through the thermodynamic values of key intermediates in each mechanism. Finally, these studies culminate in the synthesis of a novel trifluorinated analog of monastrol and its subsequent biological evaluation in vitro. More broadly, we show an application of benchtop 19F NMR spectroscopy as an analytical tool in the real-time investigation of a mechanistically and chemically complex multicomponent reaction mixture.

2.
Nat Chem ; 14(12): 1421-1426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192432

RESUMO

Tigilanol tiglate is a natural product diterpenoid in clinical trials for the treatment of a broad range of cancers. Its unprecedented protein kinase C isoform selectivity make it and its analogues exceptional leads for PKC-related clinical indications, which include human immunodeficiency virus and AIDS eradication, antigen-enhanced cancer immunotherapy, Alzheimer's disease and multiple sclerosis. Currently, the only source of tigilanol tiglate is a rain forest tree, Fontainea picrosperma, whose limited number and restricted distribution (northeastern Australia) has prompted consideration of designed tree plantations to address supply needs. Here we report a practical laboratory synthesis of tigilanol tiglate that proceeds in 12 steps (12% overall yield, >80% average yield per step) and can be used to sustainably supply tigilanol tiglate and its analogues, the latter otherwise inaccessible from the natural source. The success of this synthesis is based on a unique strategy for the installation of an oxidation pattern common to many biologically active tiglianes, daphnanes and their analogues.


Assuntos
Diterpenos , Neoplasias , Forbóis , Humanos , Diterpenos/uso terapêutico , Inibidores de Proteínas Quinases , Proteína Quinase C/metabolismo
3.
J Pept Sci ; 25(8): e3199, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31231935

RESUMO

The aggregation of the 37-amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic ß-islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on-path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full-length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full-length IAPP.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Animais , Gatos , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Cães , Relação Dose-Resposta a Droga , Cobaias , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Octodon , Guaxinins , Ratos , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA