Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 117(2): 482-492, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105403

RESUMO

PURPOSE: Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS: We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS: UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS: Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.


Assuntos
Elétrons , Neoplasias , Humanos , Radiometria/métodos , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
2.
EJHaem ; 4(1): 90-99, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36819184

RESUMO

Low-grade lymphomas have a 1%-3% annual risk of transformation to a high-grade histology, and prognostic factors remain undefined. We set to investigate the role of positron emission tomography (PET) metrics in identification of transformation in a retrospective case-control series of patients matched by histology and follow-up time. We measured PET parameters including maximum standard uptake value (SUV-max) and total lesion glycolysis (TLG), and developed a PET feature and lactate dehydrogenase (LDH)-based model to identify transformation status within discovery and validation cohorts. For our discovery cohort, we identified 53 patients with transformation and 53 controls with a similar distribution of follicular lymphoma (FL). Time to transformation and control follow-up time was similar. We observed a significant incremental increase in SUV-max and TLG between control, pretransformation and post-transformation groups (P < 0.05). By multivariable analysis, we identified a significant interaction between SUV-max and TLG such that SUV-max had highest significance for low volume cases (P = 0.04). We developed a scoring model incorporating SUV-max, TLG, and serum LDH with improved identification of transformation (area under the curve [AUC] = 0.91). Our model performed similarly for our validation cohort of 23 patients (AUC = 0.90). With external and prospective validation, our scoring model may provide a specific and noninvasive tool for risk stratification for patients with low-grade lymphoma.

4.
JACC CardioOncol ; 5(6): 775-787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205000

RESUMO

Background: Radiotherapy may cause grade ≥3 cardiac events, necessitating a better understanding of risk factors. The potential predictive role of imaging biomarkers with radiotherapy doses for cardiac event occurrence has not been studied. Objectives: The aim of this study was to establish the associations between cardiac substructure dose and coronary artery calcium (CAC) scores and cardiac event occurrence. Methods: A retrospective cohort analysis included patients with locally advanced non-small cell lung cancer treated with radiotherapy (2006-2018). Cardiac substructures, including the left anterior descending coronary artery, left main coronary artery, left circumflex coronary artery, right coronary artery, and TotalLeft (left anterior descending, left main, and left circumflex coronary arteries), were contoured. Doses were measured in 2-Gy equivalent units, and visual CAC scoring was compared with automated scoring. Grade ≥3 adverse cardiac events were recorded. Time-dependent receiver-operating characteristic modeling, the log-rank statistic, and competing-risk models were used to measure prediction performance, threshold modeling, and the cumulative incidence of cardiac events, respectively. Results: Of the 233 eligible patients, 61.4% were men, with a median age of 68.1 years (range: 34.9-90.7 years). The median follow-up period was 73.7 months (range: 1.6-153.9 months). Following radiotherapy, 22.3% experienced cardiac events, within a median time of 21.5 months (range: 1.7-118.9 months). Visual CAC scoring showed significant correlation with automated scoring (r = 0.72; P < 0.001). In a competing-risk multivariable model, TotalLeft volume receiving 15 Gy (per 1 cc; HR: 1.38; 95% CI: 1.11-1.72; P = 0.004) and CAC score >5 (HR: 2.51; 95% CI: 1.08-5.86; P = 0.033) were independently associated with cardiac events. A model incorporating age, TotalLeft CAC (score >5), and volume receiving 15 Gy demonstrated a higher incidence of cardiac events for a high-risk group (28.9%) compared with a low-risk group (6.9%) (P < 0.001). Conclusions: Adverse cardiac events associated with radiation occur in more than 20% of patients undergoing thoracic radiotherapy within a median time of <2 years. The present findings provide further evidence to support significant associations between TotalLeft radiotherapy dose and cardiac events and define CAC as a predictive risk factor.

5.
Radiother Oncol ; 175: 203-209, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030934

RESUMO

BACKGROUND AND PURPOSE: We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates. The need to establish optimal beam parameters capable of achieving the in vivo FLASH effect has become paramount. It is therefore necessary to validate and replicate dosimetry across multiple sites conducting UHDR studies with distinct beam configurations and experimental set-ups. MATERIALS AND METHODS: Using a custom cuboid phantom with a cylindrical cavity (5 mm diameter by 10.4 mm length) designed to contain three type of dosimeters (thermoluminescent dosimeters (TLDs), alanine pellets, and Gafchromic films), irradiations were conducted at expected doses of 7.5 to 16 Gy delivered at UHDR or conventional dose rates using various electron beams at the Radiation Oncology Departments of the CHUV in Lausanne, Switzerland and Stanford University, CA. RESULTS: Data obtained between replicate experiments for all dosimeters were in excellent agreement (±3%). In general, films and TLDs were in closer agreement with each other, while alanine provided the closest match between the expected and measured dose, with certain caveats related to absolute reference dose. CONCLUSION: In conclusion, successful cross-validation of different electron beams operating under different energies and configurations lays the foundation for establishing dosimetric consensus for UHDR irradiation studies, and, if widely implemented, decrease uncertainty between different sites investigating the mechanistic basis of the FLASH effect.


Assuntos
Elétrons , Radiometria , Humanos , Imagens de Fantasmas , Água , Alanina
6.
Int J Radiat Oncol Biol Phys ; 114(4): 603-610, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654305

RESUMO

PURPOSE: Because of the limitations of current staging systems and evolving definitions, there are limited data on oligometastatic non-small cell lung cancer (NSCLC) epidemiology. The purpose of this study was to evaluate metastatic disease burden and the incidence of oligometastatic disease using recent clinical trial eligibility criteria. METHODS AND MATERIALS: A cohort of patients with metastatic NSCLC, diagnosed from 2016 to 2019, were randomly sampled from a curated tumor registry. Definitions for oligometastatic disease were obtained from relevant clinical trials. The Stanford Cancer Institute Research Database was used to identify baseline patient factors, systemic and local therapy, extent and location of metastatic lesions, and survival outcomes. RESULTS: Among 120 patients presenting with metastatic NSCLC, the majority had de novo metastatic disease (75%) with a median of 4 metastatic lesions involving 3 organ systems. Of these, 37.5% would have been eligible for at least 1 oligometastatic trial, with 28.3% meeting criteria for the MD Anderson Cancer Center trial, 20.0% for NRG-LU002, 6.7% for SINDAS, and 16.7% for SABR-COMET. By adding malignant pleural effusions and early progression as exclusionary criteria, only 54.1% of patients with ≤3 synchronous metastases were eligible for consideration of local therapy. Early progression on systemic therapy was associated with worse survival (10.0 vs 42.4 months; P < .001), whereas presence of malignant pleural effusions was not. Of those tumors identified as oligometastatic, 44.4% received local therapy and 28.9% underwent ablative therapy to all sites. There was a trend toward greater overall survival (44.4 vs 24.9 months; P = .055) and progression-free survival (8.0 vs 5.4 months; P = .06) in patients meeting eligibility for at least 1 oligometastatic trial. CONCLUSIONS: Around 48% of patients with metastatic NSCLC had ≤3 metastases at presentation and 28% met clinical trial criteria for oligometastatic disease. Future research is needed to better define the oligometastatic state and identify patients most likely to benefit from local therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Incidência , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão , Radiocirurgia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA