Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Transl Med ; 16(751): eadi3259, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865485

RESUMO

Robust structural remodeling and synaptic plasticity occurs within spinal autonomic circuitry after severe high-level spinal cord injury (SCI). As a result, normally innocuous visceral or somatic stimuli elicit uncontrolled activation of spinal sympathetic reflexes that contribute to systemic disease and organ-specific pathology. How hyperexcitable sympathetic circuitry forms is unknown, but local cues from neighboring glia likely help mold these maladaptive neuronal networks. Here, we used a mouse model of SCI to show that microglia surrounded active glutamatergic interneurons and subsequently coordinated multi-segmental excitatory synaptogenesis and expansion of sympathetic networks that control immune, neuroendocrine, and cardiovascular functions. Depleting microglia during critical periods of circuit remodeling after SCI prevented maladaptive synaptic and structural plasticity in autonomic networks, decreased the frequency and severity of autonomic dysreflexia, and prevented SCI-induced immunosuppression. Forced turnover of microglia in microglia-depleted mice restored structural and functional indices of pathological dysautonomia, providing further evidence that microglia are key effectors of autonomic plasticity. Additional data show that microglia-dependent autonomic plasticity required expression of triggering receptor expressed on myeloid cells 2 (Trem2) and α2δ-1-dependent synaptogenesis. These data suggest that microglia are primary effectors of autonomic neuroplasticity and dysautonomia after SCI in mice. Manipulating microglia may be a strategy to limit autonomic complications after SCI or other forms of neurologic disease.


Assuntos
Microglia , Plasticidade Neuronal , Traumatismos da Medula Espinal , Animais , Microglia/patologia , Microglia/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Camundongos , Receptores Imunológicos/metabolismo , Glicoproteínas de Membrana/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Interneurônios/metabolismo
2.
Glia ; 71(9): 2096-2116, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208933

RESUMO

Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination. We also examined electrophysiological changes during peak oligogenesis and a potential mechanism driving OL progenitor cell (OPC) contact with axons. Results reveal peak in remyelination occurs during the 3rd mpi, and that myelin generation continues for at least 6 mpi. Further, motor evoked potentials significantly increased during peak remyelination, suggesting enhanced axon potential conduction. Interestingly, two indices of demyelination, nodal protein spreading and Nav1.2 upregulation, were also present chronically after SCI. Nav1.2 was expressed through 10 wpi and nodal protein disorganization was detectable throughout 6 mpi suggesting chronic demyelination, which was confirmed with EM. Thus, demyelination may continue chronically, which could trigger the long-term remyelination response. To examine a potential mechanism that may initiate post-injury myelination, we show that OPC processes contact glutamatergic axons in the injured spinal cord in an activity-dependent manner. Notably, these OPC/axon contacts were increased 2-fold when axons were activated chemogenetically, revealing a potential therapeutic target to enhance post-SCI myelin repair. Collectively, results show the surprisingly dynamic nature of the injured spinal cord over time and that the tissue may be amenable to treatments targeting chronic demyelination.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Camundongos , Animais , Bainha de Mielina/metabolismo , Proteína Nodal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Axônios/fisiologia , Oligodendroglia/metabolismo , Medula Espinal , Doenças Desmielinizantes/metabolismo
3.
J Neurosci ; 42(17): 3659-3675, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35304427

RESUMO

Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2+ spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI. To test whether the onset and progression of SCI-induced sympathetic plasticity is neuron activity dependent, we selectively inhibited (or excited) thoracic VGluT2+ interneurons using chemogenetics. New data show that silencing VGluT2+ interneurons in female and male mice with a T3 SCI, using hM4Di designer receptors exclusively activated by designer drugs (Gi DREADDs), blocks structural plasticity and the development of dysautonomia. Specifically, silencing VGluT2+ interneurons prevents the structural remodeling of spinal sympathetic networks that project to lymphoid and endocrine organs, reduces the frequency of spontaneous autonomic dysreflexia (AD), and reduces the severity of experimentally induced AD. Features of SCI-induced structural plasticity can be recapitulated in the intact spinal cord by activating excitatory hM3Dq-DREADDs in VGluT2+ interneurons. Collectively, these data implicate VGluT2+ excitatory SpINs in the onset and propagation of SCI-induced structural plasticity and dysautonomia, and reveal the potential for neuromodulation to block or reduce dysautonomia after severe high-level SCI.SIGNIFICANCE STATEMENT In response to stress or dangerous stimuli, autonomic spinal neurons coordinate a "fight or flight" response marked by increased cardiac output and release of stress hormones. After a spinal cord injury (SCI), normally harmless stimuli like bladder filling can result in a "false" fight or flight response, causing pathological changes throughout the body. We show that progressive hypertension and immune suppression develop after SCI because thoracic excitatory VGluT2+ spinal interneurons (SpINs) provoke structural remodeling in autonomic networks within below-lesion spinal levels. These pathological changes can be prevented in SCI mice or phenocopied in uninjured mice using chemogenetics to selectively manipulate activity in VGluT2+ SpINs. Targeted neuromodulation of SpINs could prevent structural plasticity and subsequent autonomic dysfunction in people with SCI.


Assuntos
Disreflexia Autonômica , Disautonomias Primárias , Traumatismos da Medula Espinal , Animais , Disreflexia Autonômica/etiologia , Feminino , Humanos , Interneurônios/patologia , Masculino , Camundongos , Disautonomias Primárias/complicações , Medula Espinal/patologia
4.
Cell Rep ; 34(4): 108667, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503436

RESUMO

After spinal cord injury (SCI), normally innocuous visceral or somatic stimuli can trigger uncontrolled reflex activation of sympathetic circuitry, causing pathological dysautonomia. We show that remarkable structural remodeling and plasticity occur within spinal autonomic circuitry, creating abnormal sympathetic reflexes that promote dysautonomia. However, when mice are treated early after SCI with human-equivalent doses of the US Food and Drug Administration (FDA)-approved drug gabapentin (GBP), it is possible to block multi-segmental excitatory synaptogenesis and abolish sprouting of autonomic neurons that innervate immune organs and sensory afferents that trigger pain and autonomic dysreflexia (AD). This "prophylactic GBP" regimen decreases the frequency and severity of AD and protects against SCI-induced immune suppression. These benefits persist even 1 month after stopping treatment. GBP could be repurposed to prevent dysautonomia in at-risk individuals with high-level SCI.


Assuntos
Disreflexia Autonômica/terapia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Gabapentina/uso terapêutico , Traumatismos da Medula Espinal/terapia , Animais , Disreflexia Autonômica/patologia , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gabapentina/farmacologia , Humanos , Masculino , Camundongos , Traumatismos da Medula Espinal/patologia
5.
J Neuroimmunol ; 321: 1-11, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957379

RESUMO

Traumatic spinal cord injury (SCI) causes widespread damage to neurons, glia and endothelia located throughout the spinal parenchyma. In response to the injury, resident and blood-derived leukocytes orchestrate an intraspinal inflammatory response that propagates secondary neuropathology and also promotes tissue repair. SCI also negatively affects autonomic control over peripheral immune organs, notably the spleen. The spleen is the largest secondary lymphoid organ in mammals, with major roles in blood filtration and host defense. Splenic function is carefully regulated by neuroendocrine mechanisms that ensure that the immune responses to infection or injury are proportionate to the initiating stimulus, and can be terminated when the stimulus is cleared. After SCI, control over the viscera, including endocrine and lymphoid tissues is lost due to damage to spinal autonomic (sympathetic) circuitry. This review begins by examining the normal structure and function of the spleen including patterns of innervation and the role played by the nervous system in regulating spleen function. We then describe how after SCI, loss of proper neural control over splenic function leads to systems-wide neuropathology, immune suppression and autoimmunity. We conclude by discussing opportunities for targeting the spleen to restore immune homeostasis, reduce morbidity and mortality, and improve functional recovery after SCI.


Assuntos
Autoimunidade/fisiologia , Neuroimunomodulação/fisiologia , Traumatismos da Medula Espinal/imunologia , Baço/imunologia , Animais , Humanos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Baço/inervação , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA