Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Total Environ ; 924: 171590, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485030

RESUMO

The chemical species of trace elements (TEs) in agricultural soils is highly variable under diverse conditions, requiring tools with clear resolution and minimal disturbance for exploration. A novel surgical (316L) stainless steel (SS) lysimeter with a 5 µm pore size was developed to collect field soil solutions. The size-resolved distribution of TEs were characterized into total (nitric acid digestion), particulate (0.45-5 µm), dissolved (<0.45 µm), colloidal (1 kDa to 0.45 µm), and mainly ionic (<1 kDa) fractions in the lysimeter soil solutions. Total concentrations of TEs (dry weight basis) in acid digested Gray Luvisolic soils were analyzed. Most TEs in lysimeter soil solutions were present in particulate phases, relevant to their geochemical affinities and occurrences in soil minerals. Among dissolved fractions, As, Ba, Co, Li, Mn, Tl, and V existed as mainly ionic species in the soil solutions. Copper, Pb, Al, Th, and U showed variable associations with dissolved organic matter (DOM) and/or inorganic colloids among agricultural treatments. Inorganic NPKS or NKS fertilizer applications with lower pH (5.25-5.74) enhanced mobility and potential bioavailability of Ba, Co, Li, Mn, and Pb present in mainly ionic species, compared with other locations (pH 5.82-6.37). Manure application exhibited a dual effect, potentially increasing bioavailability for As, Tl, and V due to probably enhanced cation exchange capacity (CEC), while also facilitating specific adsorption of Cu and U on DOM, potentially reducing their bioavailability depending on DOM molecular weight. Colloidal and ionic Al and Th concentrations were higher in forest soils than agricultural soils, with extremely low potential bioavailability of Th attributed to strong precipitation with inorganic colloids and adsorption on DOM. The lysimeter sampling and size fractionation method provided a clear insight into agricultural effects on TE distributions and enhancing understanding of agricultural soil health in terms of TE bioavailability in situ.


Assuntos
Poluentes do Solo , Oligoelementos , Oligoelementos/análise , Solo/química , Disponibilidade Biológica , Chumbo , Minerais , Coloides/química , Poluentes do Solo/análise
2.
Environ Pollut ; 345: 123470, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307240

RESUMO

Considerable volumes of dust are generated from open-pit bitumen mining operations in northern Alberta, Canada. The reactive mineral phases of these dust particles can potentially dissolve in acidic (pH < 4) bog waters. Their dissolution could release trace elements (TEs), which could eventually alter these bog ecosystems. The impact of dust dissolution on the abundance of TEs in the dissolved (<0.45 µm) fraction of porewaters from excavated pits (30-40 cm deep) in the ombrogenic zone of five peatlands was evaluated. Porewaters were collected from four bogs situated within 70 km of mines and upgraders in the Athabasca Bituminous Sands (ABS) region, Alberta, Canada, and from a reference bog situated 264 km away. Over two consecutive years, the dissolved concentrations of some conservative (Al, Th, Y) and mobile lithophile elements (Fe, Li, Mn, Sr), as well as the metals enriched in bitumen (V, Ni, Mo), all increased with proximity to the mining area, in the ABS region. These trends reflect the observed increase in dust deposition with proximity to the mining area from independent studies of snow, lichens, and Sphagnum moss. Contrarily, the impact of dust dissolution on the concentration of potentially toxic TEs (As, Cd, Pb, Sb, and Tl) was negligible. Thus, the elements which are more abundant in the porewaters near industry are either ecologically benign (e.g. Li and Sr) or essential micronutrients (e.g. Fe, Mn, Ni, and Mo). Manganese was the only element which was enriched by more than 10x at all sites near the mining area, compared to its concentration at the reference site. The enrichments of all other elements were <10x, indicating that anthropogenic dust emissions from mining areas have had only a modest effect on the TEs abundance in peat porewaters.


Assuntos
Hidrocarbonetos , Areia , Oligoelementos , Oligoelementos/análise , Solo , Áreas Alagadas , Monitoramento Ambiental , Poeira/análise , Ecossistema , Alberta , Mineração
3.
MethodsX ; 12: 102521, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38223218

RESUMO

Contamination control remains one of the greatest challenges for the reliable determination of many trace elements in environmental samples. Here we describe a series of metal-free sampling devices and tools designed and constructed specifically to minimize the risk of contamination by trace elements during sampling of dust, rainwater, surface water, plants, and sediments. Plastic components fabricated using 3-D printing include polylactic acid (PLA), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PETG), polypropylene (PP), polycarbonate (PC) and PC with carbon fibre. When additional strength is needed (e.g. supporting structural components), carbon fibre, aluminum (Al), or 316 stainless steel (SS) is used. Other plastics employed include acrylic and vinyl. Epoxy glue or SS may be used for joining components, but do not come into contact with the samples. Ceramic (zirconium dioxide) cutting blades are used where needed. Each plastic material was evaluated for contaminant trace elements by leaching with high purity nitric acid in the metal-free, ultraclean SWAMP laboratory. The devices were tested in the field to evaluate their performance and durability. When combined with appropriate cleaning procedures, the equipment enables ultraclean collection for trace element analysis of environmental media.•Plastic sampling devices were designed and constructed using 3D printing of PLA, PET, PETG or PP.•Leaching characteristics of plastic components were evaluated using high purity nitric acid in a metal-free, ultraclean laboratory.•Each sampling device was successfully field-tested in industrial settings (near open pit bitumen mines and upgraders), and in remote locations of northern Alberta, Canada.

4.
Environ Res ; 241: 117462, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939800

RESUMO

Beavers have been analyzed in several studies examining trace elements (TEs) in wildlife; however, most of these studies were undertaken in areas with known environmental pollutants. To understand and quantify natural enrichments of TEs in beaver tissue, samples of kidney, liver, muscle from 28 animals were compared with bark from 40 species of trees and shrubs, from the same, uncontaminated watershed. Pearson correlation and factor analysis show that conservative, lithophile elements such as Al, Ga, Th, and Y, all surrogates for mineral dust particles, explain 61% of the variation in the bark data. In contrast, Cd, Co, Cu, Mn, Mo, Ni, Rb, Se, Sr, and Tl in bark are independent of Al, and therefore most likely occur in non-mineral forms. Comparing tissue concentrations of beaver and bark, the organs are enriched in micronutrients such as Cu, Fe, Mo, Se, and Zn, but also non-essential, benign elements such as Cs and Rb, and potentially toxic elements such as Cd and Tl. Thus, the elements most enriched in beaver organs are those that apparently occur in biological form in the plant tissue. The elements enriched in these animals, relative to bark, appear to offer the most promise for monitoring environmental contamination by TEs using beavers. The majority of TEs of environmental relevance are most abundant in beaver kidney. However, monitoring studies must consider the variation in TE concentrations in beaver tissue, including those due to sex and age. Also, due consideration must be given to background concentrations of TEs in the vegetation composing the diet of the animals. The natural enrichment in the case of elements such as Cd, in beaver tissue relative to bark, is profound. These data establish critical baseline values for TEs in beavers in an unpolluted environment, thereby allowing for their use as model organisms in tracking how heavy metal pollutants may affect wildlife.


Assuntos
Poluentes Ambientais , Oligoelementos , Animais , Oligoelementos/análise , Ontário , Monitoramento Ambiental , Roedores , Cádmio/análise , Poluentes Ambientais/análise , Animais Selvagens
5.
Chemosphere ; 350: 141081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160952

RESUMO

The chemical reactivity of trace elements (TEs) in dusts from bitumen mining, upgrading and related industrial activities in the Athabasca Bituminous Sands region (ABS), Alberta, Canada, was evaluated using the acid-soluble fraction of snow. Samples were collected at 14 sites along the Athabasca River (AR) and its tributaries, and at 3 remote locations. Following metal-free, ultra-clean procedures for processing and analysis, samples were leached with nitric acid (pH < 1), filtered (<0.45 µm), and analyzed using ICP-MS. Insoluble particles (>0.45 µm) were examined using SEM-EDS. Along the river, acid-soluble concentrations of TEs varied by 6 orders of magnitude, from 1 mg/L (Al) to less than 1 ng/L (Tl). Conservative (Al, Y, La, Th) and mobile (Li, Be, Cs, Sr) lithophile elements, those enriched in bitumen (V, Ni, Mo), and potentially toxic chalcophile elements (As, Cd, Pb, Sb, Tl) showed considerable spatial variation. Normalizing the concentrations of TEs in samples collected near industry to the corresponding concentrations in snow from the reference site (UTK), resulted in enrichments of V and most of the lithophile elements. Dust reactivity, quantified as the ratio of acid-soluble to total concentrations, was less than 50% suggesting limited bioaccessibility. The large differences in behaviour between Cd and Pb versus Ni and V could be due to the occurrence of the former pair in carbonate or sulfide minerals, versus acid-insoluble petcoke particles for the latter couple. Spatial variations in the reactivity of TEs most likely reflect the range in diversity and chemical stability of dust particles, and variations in their abundance in primary source areas. The leaching conditions employed here are extreme (pH < 1) and intended to identify an upper limit of chemical reactivity, with far less dust dissolution expected when these dusts encounter natural waters of the area which range in pH from 4 to 8.


Assuntos
Poeira , Hidrocarbonetos , Oligoelementos , Poeira/análise , Oligoelementos/análise , Monitoramento Ambiental , Neve , Cádmio/análise , Chumbo/análise , Alberta
6.
Environ Int ; 182: 108335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006772

RESUMO

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) has increased in northern Alberta, Canada, due to industrial development in the Athabasca oil sands region (AOSR). However, the sources, summertime deposition fluxes and associated spatial patterns are poorly characterized, and the magnitude of contamination has not been directly contrasted with comparable measurements around large Canadian cities. PAHs were measured in Sphagnum moss collected from 30 bogs in the AOSR and compared with reference moss collected from various remote, rural and near-urban sites in Alberta and Ontario. At all 39 locations, strong correlations between depositional fluxes of PAHs and accumulation rates of ash (n = 117, r = 0.877, p < 0.001) implied that the main source of PAHs to moss was atmospheric deposition of particles. Average PAH concentrations at near-field AOSR sites (mean [SD], 62.4 [24.3] ng/g) were significantly higher than at far-field AOSR sites (44.9 [20.8] ng/g; p = 0.038) or the 7 reference sites in Alberta (20.6 [3.5] ng/g; p < 0.001). In fact, average PAH concentrations across the entire AOSR (7,850 km2) were approximately twice as high as in London, Ontario, or near petroleum upgrading and major traffic corridors in Edmonton, Alberta. A chemical mass balance model estimated that both delayed petcoke (33 % of PAHs) and fine tailings (38 % of PAHs) were the major sources of PAHs in the AOSR. Over the 2015 summer growing season, we estimate that 101-110 kg of PAHs (on 14,300-17,300 tonnes of PAH-containing dusts) were deposited to the AOSR within a 50 km radius of surface mining. Given that the highest PAH deposition was to the northern quadrant of the AOSR, which includes the First Nations community of Fort MacKay, further dust control measures should be considered to protect human and environmental health in the region.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Campos de Petróleo e Gás , Poeira/análise , Alberta , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
7.
Environ Res ; 237(Pt 2): 116973, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625536

RESUMO

To help understand the bioaccumulation of Cd and Tl in beaver tissue, we examined the enrichment of these metals in vegetation available to the animals. Bark was collected from 40 species of trees and shrubs, along with a complete soil weathering profile, within a small watershed devoid of trace metal contamination. Weathering resulted in a 5x enrichment of Cd in the soils relative to the underlying sediments, and a 6x Tl depletion: while Cd was lost from calcite and accumulates in the organic matter and oxyhydroxide fractions, Tl occurred only in the residual fraction. Soil processes alone, however, cannot explain the anomalous concentrations and enrichments of Cd in willow and poplar which contain up to 8.5 mg/kg Cd. The concentrations of Cd and Tl in the dissolved fraction (<0.45 µm) of the Wye River are similar (1.2 ± 0.4 and 1.6 ± 0.1 ng/L, respectively), and are taken to estimate their bioavailability in soil solutions. Normalizing the Cd/metal ratios in bark to the corresponding ratios in water yields the Stream Enrichment Factor: this novel approach shows that all plant species are enriched in Cd relative to Ni; 33 relative to Cu, 13 relative to Zn, and 7 relative to Mn. Thus, many plants preferentially accumulate Cd, especially willow and poplar, over these essential micronutrients. Clearly, the enrichment of Cd over Tl in bark is not a reflection of differences in bioavailability, but rather on the preferential uptake of Cd by the plants. The profound natural bioaccumulation of Cd in the bark of willow and poplar, the two favourite foods of the beaver, has ramifications for the use of these aquatic mammals as biomonitors of environmental contamination, as well as for the direct and indirect consumption of bark for traditional food and medicine.

8.
Environ Int ; 158: 106910, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607041

RESUMO

Fort McMurray and the Athabasca oil sands region (AOSR) experienced major wildfires in 2016, but the impact of these on regional deposition of polycyclic aromatic hydrocarbons (PAHs) and trace elements has not been reported nor compared to industrial sources of these pollutants in the region. Living moss (Sphagnum fuscum) was collected in triplicate from five ombrotrophic bogs in the AOSR after the wildfires, and analyzed for PAHs and trace elements. These post-wildfire data were compared to data from previous years at the same sites, and also to remote reference bogs in Alberta and Ontario. Elevated post-wildfire concentrations and flux of naphthalene and fluorene were observed at all five bogs in the AOSR, but no consistent trend was evident for higher molecular weight PAHs or the sum of priority PAHs (∑13PAH). Trace elements at most AOSR bogs were not elevated post-wildfire, except at one bog in the burned area (MIL), but even here the elements that were increased (1.7-5.6 × ) were likely of bitumen-origin (i.e., V, Ni, Se, Mo and Re). Significant post-wildfire correlations between PAHs and most trace elements suggested a common source, and few significant correlations were observed with retene, suggesting that wildfires were not the dominant source of most contaminants detected. Mass balance receptor models were used to apportion sources, indicating that the major sources of trace elements among five AOSR bogs post-wildfire were oil sands ore (mean 42%), haul road dust (17%), and petcoke (11%), whereas wildfire was always a minor source (3-4%). For PAHs at the most contaminated site (MIL), delayed petcoke (27%) and wildfire (25%) were the major sources, but the contribution of wildfire to PAHs at other sites was less or not discernable. Impacts of the 2016 wildfires on regional atmospheric deposition of major pollutants was less than from ongoing deposition of anthropogenic dust from oil sands activities.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Incêndios Florestais , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Áreas Alagadas
9.
Environ Res ; 183: 109272, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32113170

RESUMO

Labrador Tea (Rhododendron groenlandicum) has been an important food and medicinal plant to First Nations communities in North America for millenia, but little is known of its geochemical properties. Using plants from 10 sites in 4 provinces, including pristine and industrial regions, and employing the metal-free, ultraclean SWAMP laboratory facilities and procedures, we provide an estimate of the natural abundance of trace elements in the leaves, and the extent of their release during hot water extraction. Elements decrease in abundance in the order Mn > Al > Fe > Zn > Cu > Ni > V > Pb > La > Mo > Y > La > Tl > Cd > Th > Ag. The greatest concentrations of conservative, lithophile elements such as Al, La, Th and Y, are found in samples collected on lands reclaimed from open pit bitumen mines in northern Alberta, reflecting elevated inputs of atmospheric dusts. In contrast, micronutrients such as Cu and Zn are remarkably uniform which suggests that these are supplied almost exclusively by plant uptake via roots. Deionized, reverse osmosis water is more effective in removing some elements (e.g. Al, La, Y, Fe, Zn, Cd) whereas others are more readily extracted using groundwater (e.g. Cu, Ni, Pb); V behaves independently of water composition. In both types of water, the elements most readily extracted are plant micronutrients (Mn, Ni, Cu, and Zn) whereas those supplied primarily by dust exhibit much lower yields; Al shows behaviour intermediate between these two extremes. While element concentrations in the infusions increase with increasing concentrations in the leaves, the abundance of potentially toxic chalcophile elements such as Cd, Pb, Sb and Tl in the infusions are extremely low (ng/l). Plants from British Columbia, Ontario and Quebec provide evidence of atmospheric Pb contamination, yielding greater ratios of Pb/La compared to the samples from Alberta where crustal values are found. Given that this plant is common and found across the northern half of the continent, it shows great promise as a tool for biomonitoring of air quality. For consumers, Labrador Tea may represent an important dietary source of Mn.


Assuntos
Ledum , Rhododendron , Chá/química , Oligoelementos , Alberta , Colúmbia Britânica , Monitoramento Ambiental , América do Norte , Ontário , Quebeque , Oligoelementos/análise
10.
Environ Sci Technol ; 53(23): 14020-14028, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31743010

RESUMO

Selenium (Se) is one of the trace elements that is enriched in bitumen. To assess the importance of atmospheric Se deposition from mining and upgrading of bituminous sands in northern Alberta, Canada, Sphagnum moss was obtained from 25 bogs near industrial operations. The average Se concentration in moss near industries (58 ± 13 µg/kg; n = 75) was greater than in remote sites in Alberta (29-50 µg/kg), but comparable to bogs in central regions of the province and lower than bogs in southern Ontario (121-244 µg/kg) or the west and east coasts (230-285 µg/kg). In bog vegetation and peat, arsenic (As) concentrations and accumulation rates are 10 times greater at the industrial site (MIL) compared to the control site (UTK), but this is proportional to the differences in scandium (a surrogate for mineral matter concentrations), which points to dust as the predominant As source. An age-dated peat core collected near industries revealed that both Se and As deposition have declined in recent years. A peat core from UTK provided a record of atmospheric deposition dating back over 2700 years, indicating that As and Se deposition in northern Alberta increased considerably in the early 19th century and then went into decline during ∼1950-1970.


Assuntos
Arsênio , Selênio , Alberta , Monitoramento Ambiental , Ontário , Areia , Solo
11.
Sci Total Environ ; 672: 40-50, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954822

RESUMO

Chalcophile (Ag, Cd, Co, Cu, Mo, Ni, Pb, Se, Tl, Zn) and lithophile (Al, Ba, Ce, Cr, Cs, Fe, La, Li, Mn, Nd, Rb, Sr, V, Y) trace elements (TEs) were determined in kidney, liver and muscle of beaver (Castor canadensis) from a rural watershed in southern Ontario, Canada. To estimate the relative bioavailability of TEs in the landscape, they were also determined in the dissolved (<0.45 µm) fraction of water from the river where the animals were harvested. Concentration ratios (tissue/water) always showed the greatest enrichments for Cd (kidney, 1.1 × 107; liver, 2.4 × 106; muscle, 7.2 × 105), most likely due to the metal binding properties of metallothioneins. Despite its potential toxicity, Tl also showed considerable enrichment: kidney, 4.2 × 104; liver 1.2 × 104; muscle 1.5 × 104. Enrichments of Cs and Rb exceeded those of Tl in all three tissues, suggesting that the chemical similarity of their ionic species (Cs+, Rb+, Tl+) to K+ may be the key to their uptake. Lithophile elements of limited solubility in natural waters (Al, Ce, La, Nd) show moderate enrichments, despite the lack of physiological role. The smallest enrichments were found for Sr and Ba, the two TEs which are most abundant in the river. Of the TEs considered essential for animal nutrition, V was the least enriched in tissue relative to water (liver 19×, kidney, 33× and muscle 28×). Despite the lack of physiological function and absence of any known sources of contamination, Al, Ag, Cd, Ce, Cs, La, Pb, Rb, and Tl, are all enriched in beaver tissue, relative to water, by at least three orders of magnitude, due to natural processes. The widespread abundance of beaver in Canada combined with the growing need to manage their numbers in populated regions offer a unique opportunity for monitoring environmental quality in the riparian zone.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Roedores/metabolismo , Oligoelementos/metabolismo , Animais , Ontário
12.
Sci Total Environ ; 670: 849-864, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30921718

RESUMO

There are ongoing concerns regarding environmental emissions of trace elements (TEs) from bitumen mining and upgrading in the Athabasca Bituminous Sands Region (ABSR). Depending on their physical and chemical forms, elevated concentrations of potentially toxic TEs in berries could pose a health risk to local indigenous communities because native fruits are an important part of their traditional diet. The objective of this study was to distinguish between aerial deposition of TEs versus plant uptake, in cranberries, lingonberries, and blueberries growing in the ABSR. The concentrations of TEs were determined using ICP-MS in the metal-free, ultraclean SWAMP lab at the University of Alberta. The spatial variation in abundance of conservative, lithophile elements such as Y in berries resembles the published map of dust deposition rates obtained using Sphagnum moss. The presence of dust particles on the surface of the berries near open pit mines and upgraders was confirmed using SEM. Elements which show strong, positive correlation with Y include Al, Cr, Pb, U, and V; these are supplied mainly by dust. Elements which are largely independent of Y concentrations include Ba, Cd, Cu, Mn, Mo, Ni, Rb, Sr, and Zn; these are obtained primarily by plant uptake from soil. The concentrations of elements associated with dust were considerably reduced after washing with water, but the elements independent of dust inputs were unaffected. Elements which are supplied almost exclusively by dust (e.g. Y) are more abundant in berries from the ABS region (2 to 24 times), compared to berries from remote locations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Oligoelementos/análise , Alberta , Atmosfera/química , Poeira , Frutas/química , Hidrocarbonetos , Metais , Mineração , Dióxido de Silício , Solo , Sphagnopsida , Áreas Alagadas
13.
Sci Total Environ ; 650(Pt 2): 2559-2566, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373047

RESUMO

It has been suggested that open pit mining and upgrading of bitumen in northern Alberta releases Tl and other potentially toxic elements to the Athabasca River and its watershed. We examined Tl and other trace elements in otoliths of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, collected along the Athabasca River. Otoliths were analyzed using ICP-QMS, following acid digestion, in the metal-free, ultraclean SWAMP laboratory. Compared to their average abundance in the dissolved (<0.45 µm) fraction of Athabasca River, Tl showed the greatest enrichment in otoliths of any of the trace elements, with enrichments decreasing in the order Tl, Sr, Mn, Zn, Ba, Th, Ni, Rb, Fe, Al, Cr, Ni, Cu, Pb, Co, Li, Y, V, and Mo. Normalizing Tl in the otoliths to the concentrations of lithophile elements such as Li, Rb, Al or Y in the same tissue reveals average enrichments of 177, 22, 19 and 190 times, respectively, relative to the corresponding ratios in the water. None of the element concentrations (Tl, Li, Rb, Al, Y) or ratios were significantly greater downstream of industry compared to upstream. This natural bioaccumulation of Tl most likely reflects the similarity in geochemical and biological properties of Tl+ and K+. SUMMARY OF MAIN FINDINGS: Thallium is enriched in fish otoliths, relative to the chemical composition of the river, to the same degree both upstream and downstream of industry.


Assuntos
Exposição Ambiental , Peixes/metabolismo , Membrana dos Otólitos/química , Tálio/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Alberta , Animais , Monitoramento Ambiental , Hidrocarbonetos , Mineração , Rios
14.
Environ Sci Technol ; 51(17): 9524-9532, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28726392

RESUMO

With growth of the Canadian oil sands industry, concerns have been raised about possible seepage of toxic oil sands process-affected water (OSPW) into the Athabasca River (AR). A sampling campaign in fall 2015 was undertaken to monitor for anthropogenic seepage while also considering natural sources. Naphthenic acids (NAs) and thousands of bitumen-derived organics were characterized in surface water, groundwater, and OSPW using a highly sensitive online solid phase extraction-HPLC-Orbitrap method. Elevated NA concentrations and bitumen-derived organics were detected in McLean Creek (30.1 µg/L) and Beaver Creek (190 µg/L), two tributaries that are physically impacted by tailings structures. This was suggestive of OSPW seepage, but conclusive differentiation of anthropogenic and natural sources remained difficult. High NA concentrations and bitumen-derived organics were also observed in natural water located far north of the industry, including exceedingly high concentrations in AR groundwater (A5w-GW, 2000 µg/L) and elevated concentration in a tributary river (Pierre River, 34.7 µg/L). Despite these evidence for both natural and anthropogenic seepage, no evidence of any bitumen-derived organics was detected at any location in AR mainstem surface water. The chemical significance of any bitumen-derived seepage to the AR was therefore minimal, and focused monitoring in tributaries will be valuable in the future.


Assuntos
Ácidos Carboxílicos/análise , Campos de Petróleo e Gás , Canadá , Água , Poluentes Químicos da Água
15.
Environ Sci Technol ; 51(13): 7422-7431, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28562060

RESUMO

Sphagnum moss was collected from ombrotrophic (rain-fed) peat bogs to quantify dust emissions from the open-pit mining and upgrading of Athabasca bituminous sands (ABS). A total of 30 bogs were sampled in the ABS region, and 5 were sampled in central Alberta. Ash was separated into the acid-insoluble ash (AIA) and acid-soluble ash (ASA) fractions using HCl. The AIA concentrations increase toward industry from 0.4 ± 0.5% to 4.7 ± 2.0% over a distance of 30 km; the control site at the Utikuma Region Study Area (URSA) yielded 0.29 ± 0.07% (n = 30). Mass accumulations rates showed similar spatial variation. The morphology and mineralogy of the AIA particles were studied using scanning electron microscopy and energy-dispersive X-ray analysis and the particle size distributions using optical methods. Particle size was more variable in moss closer to industry. Major ions in the ASA fraction showed elevated accumulation rates of Ca, K, Fe, Mg, P, and S, with P being up to 5 times greater in samples nearest industry compared to those in distal locations. Given that P has been regarded as the growth-limiting nutrient in bogs, fertilization of nutrient-poor ecosystems, such as these from fugitive emissions of dusts from open-pit mining, may have long-term ecological ramifications.


Assuntos
Poeira , Monitoramento Ambiental , Sphagnopsida , Alberta , Áreas Alagadas
16.
Environ Sci Technol ; 51(11): 6237-6249, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485980

RESUMO

Peat cores were collected from five bogs in the vicinity of open pit mines and upgraders of the Athabasca Bituminous Sands, the largest reservoir of bitumen in the world. Frozen cores were sectioned into 1 cm slices, and trace metals determined in the ultraclean SWAMP lab using ICP-QMS. The uppermost sections of the cores were age-dated with 210Pb using ultralow background gamma spectrometry, and selected plant macrofossils dated using 14C. At each site, trace metal concentrations as well as enrichment factors (calculated relative to the corresponding element/Th ratio of the Upper Continental Crust) reveal maximum values 10 to 40 cm below the surface which shows that the zenith of atmospheric contamination occurred in the past. The age-depth relationships show that atmospheric contamination by trace metals (Ag, Cd, Sb, Tl, but also V, Ni, and Mo which are enriched in bitumen) has been declining in northern Alberta for decades. In fact, the greatest contemporary enrichments of Ag, Cd, Sb, and Tl (in the top layers of the peat cores) are found at the control site (Utikuma) which is 264 km SW, suggesting that long-range atmospheric transport from other sources must be duly considered in any source assessment.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais , Áreas Alagadas , Alberta , Solo
17.
Sci Total Environ ; 580: 660-669, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989481

RESUMO

Water samples were collected on the Athabasca River (AR), upstream and downstream from bitumen mines and upgrading facilities, to identify changes in water quality due to industrial activities in this region of northern Alberta, Canada. Starting upstream of Fort McMurray and proceeding downstream ca. 100km, waters were collected in duplicate at 13 locations on the main stem of the river, as well as 5 tributary streams, using ultraclean sampling protocols developed for polar snow and ice. To estimate potential bioaccessibility, trace elements of concern (Ag, Cd, Pb, Sb, Tl) were determined in the dissolved fraction (<0.45µm) along with metals known for their enrichments in bitumen (V, Ni, Mo, Re) and those found mainly in ionic (Li, Sr) or colloidal forms (Al, Co, Cr, Fe, Ga, Mn, Th, Y). Analyses were performed in the metal-free, ultraclean SWAMP lab using quadrupole and sector-field ICP-MS. Concentrations of Ag, Cd, Pb, Sb and Tl were extremely low, not significantly more abundant downstream of industry and probably reflect "background" values. In contrast, V, Ni, Mo and Re concentrations were all significantly (p<0.05) greater downstream of industry. However, chloride also increased downstream, due to natural inputs of saline groundwaters and it is unclear whether the increases in V, Ni, Mo and Re are due to natural or anthropogenic inputs to the river. Although it had been claimed that the industrial development of the Athabasca Bituminous Sands (ABS) is a significant source of Ag, Cd, Pb, Sb and Tl to the river, our study failed to find any evidence to support this. Here we provide a first, robust (accurate and precise) description of baseline values for these trace elements in the AR, and suggest that V, Ni, Mo and Re are more valuable tracers for environmental monitoring and source assessment.

18.
Environ Int ; 92-93: 494-506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27177217

RESUMO

Sphagnum fuscum was collected from twenty-five ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca Bituminous Sands (ABS) in northern Alberta (AB) in order to assess the extent of atmospheric contamination by trace elements. As a control, this moss species was also collected at a bog near Utikuma (UTK) in an undeveloped part of AB and 264km SW of the ABS region. For comparison, this moss was also collected in central AB, in the vicinity of the City of Edmonton which is approximately 500km to the south of the ABS region, from the Wagner Wetland which is 22km W of the City, from Seba Beach (ca. 90km W) and from Elk Island National Park (ca. 45km E). All of the moss samples were digested and trace elements concentrations determined using ICP-SMS at a commercial laboratory, with selected samples also analyzed using instrumental neutron activation analysis at the University of Alberta. The mosses from the ABS region yielded lower concentrations of Ag, As, Bi, Cd, Cu, Pb, Sb, Tl, and Zn compared to the moss from the Edmonton area. Concentrations of Ni and Mo in the mosses were comparable in these two regions, but V was more abundant in the ABS samples. Compared with the surface vegetation of eight peat cores collected in recent years from British Columbia, Ontario, Quebec and New Brunswick, the mean concentrations of Ag, As, Bi, Cd, Cu, Mo, Ni, Pb, Sb, Tl and Zn in the mosses from the ABS region are generally much lower. In fact, the concentrations of these trace elements in the samples from the ABS region are comparable to the corresponding values in forest moss from remote regions of central and northern Norway. Lithophile element concentrations (Ba, Be, Ga, Ge, Li, Sc, Th, Ti, Zr) explain most of the variation in trace metal concentrations in the moss samples. The mean concentrations of Th and Zr are greatest in the moss samples from the ABS region, reflecting dust inputs to the bogs from open pit mines, aggregate quarries, and gravel roads. Linear regressions of V, Ni, and Mo (elements enriched in bitumen) versus Sc (a conservative, lithophile element) show excellent correlations in the mosses from the ABS region, but this is true also of Ag, Pb, Sb and Tl: thus, most of the variation in the trace metal concentrations can be explained simply by the abundance of dust particles on the plants of this region. Unlike the moss samples from the ABS region and from UTK where Pb/Sc ratios resemble those of crustal rocks, the moss samples from the other regions studied yielded much greater Pb/Sc ratios implying significant anthropogenic Pb contributions at these other sites.


Assuntos
Arsênio/análise , Poeira/análise , Poluentes Ambientais/análise , Metais Pesados/análise , Sphagnopsida , Alberta , Cidades , Monitoramento Ambiental , Hidrocarbonetos , Mineração , Solo , Áreas Alagadas
19.
Environ Sci Technol ; 50(4): 1711-20, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771587

RESUMO

Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 µm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.


Assuntos
Poluentes Atmosféricos/química , Coque/análise , Poeira/análise , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/química , Canadá , Hidrocarbonetos , Mineração , Petróleo/análise , Estudos Prospectivos , Neve/química , Solo , Sphagnopsida , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA