Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Atherosclerosis ; 391: 117492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461759

RESUMO

BACKGROUND AND AIMS: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS: Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Humanos , Masculino , Animais , Camundongos , Angiotensina II/farmacologia , Proteína Amiloide A Sérica/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aorta Abdominal , Obesidade , Modelos Animais de Doenças , Camundongos Knockout , Apolipoproteínas E
2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139330

RESUMO

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Lesão Pulmonar/patologia , Proteína Amiloide A Sérica/genética , Sepse/patologia , Pulmão/patologia , Quimiocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37662383

RESUMO

OBJECTIVE: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. Obesity is also associated with increases in serum amyloid A (SAA). We previously reported that deficiency of SAA significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. In this study, we investigated whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. APPROACH AND RESULTS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with angiotensin II (AngII) until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSION: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.

4.
J Lipid Res ; 64(5): 100365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004910

RESUMO

Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.


Assuntos
Aterosclerose , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteína Amiloide A Sérica/metabolismo , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Aorta/metabolismo
5.
PLoS One ; 17(4): e0266688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436297

RESUMO

Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.


Assuntos
Proteína Amiloide A Sérica , Sacarose , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Proteína Amiloide A Sérica/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 42(5): 632-643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344382

RESUMO

BACKGROUND: Obesity increases the risk for human abdominal aortic aneurysms (AAAs) and enhances Ang II (angiotensin II)-induced AAA formation in C57BL/6J mice. Obesity is also associated with increases in perivascular fat that expresses proinflammatory markers including SAA (serum amyloid A). We previously reported that deficiency of SAA significantly reduces Ang II-induced inflammation and AAA in hyperlipidemic apoE-deficient mice. In this study. we investigated whether adipose tissue-derived SAA plays a role in Ang II-induced AAA in obese C57BL/6J mice. METHODS: The development of AAA was compared between male C57BL/6J mice (wild type), C57BL/6J mice lacking SAA1.1, SAA2.1, and SAA3 (TKO); and TKO mice harboring a doxycycline-inducible, adipocyte-specific SAA1.1 transgene (TKO-Tgfat; SAA expressed only in fat). All mice were fed an obesogenic diet and doxycycline to induce SAA transgene expression and infused with Ang II to induce AAA. RESULTS: In response to Ang II infusion, SAA expression was significantly increased in perivascular fat of obese C57BL/6J mice. Maximal luminal diameters of the abdominal aorta were determined by ultrasound before and after Ang II infusion, which indicated a significant increase in aortic luminal diameters in wild type and TKO-TGfat mice but not in TKO mice. Adipocyte-specific SAA expression was associated with MMP (matrix metalloproteinase) activity and macrophage infiltration in abdominal aortas of Ang II-infused obese mice. CONCLUSIONS: We demonstrate for the first time that SAA deficiency protects obese C57BL/6J mice from Ang II-induced AAA. SAA expression only in adipocytes is sufficient to cause AAA in obese mice infused with Ang II.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Adipócitos/metabolismo , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/genética , Modelos Animais de Doenças , Doxiciclina/efeitos adversos , Masculino , Metaloproteinases da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/complicações , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
7.
J Lipid Res ; 61(3): 328-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915139

RESUMO

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.


Assuntos
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
8.
J Lipid Res ; 59(2): 339-347, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247043

RESUMO

Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (∼2,500-fold vs. ∼6,000-fold, respectively) and fat (∼400-fold vs. ∼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were ∼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas ∼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that ∼100% of plasma SAA1.1 was recovered in HDL compared with only ∼50% of SAA2.1 and ∼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation.


Assuntos
Reação de Fase Aguda/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
9.
Endocrine ; 58(1): 47-58, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825176

RESUMO

PURPOSE: Group X (GX) and group V (GV) secretory phospholipase A2 (sPLA2) potently release arachidonic acid (AA) from the plasma membrane of intact cells. We previously demonstrated that GX sPLA2 negatively regulates glucose-stimulated insulin secretion (GSIS) by a prostaglandin E2 (PGE2)-dependent mechanism. In this study we investigated whether GV sPLA2 similarly regulates GSIS. METHODS: GSIS and pancreatic islet-size were assessed in wild-type (WT) and GV sPLA2-knock out (GV KO) mice. GSIS was also assessed ex vivo in isolated islets and in vitro using MIN6 pancreatic beta cell lines with or without GV sPLA2 overexpression or silencing. RESULTS: GSIS was significantly decreased in islets isolated from GV KO mice compared to WT mice and in MIN6 cells with siRNA-mediated GV sPLA2 suppression. MIN6 cells overexpressing GV sPLA2 (MIN6-GV) showed a significant increase in GSIS compared to control cells. Though the amount of AA released into the media by MIN6-GV cells was significantly higher, PGE2 production was not enhanced or cAMP content decreased compared to control MIN6 cells. Surprisingly, GV KO mice exhibited a significant increase in plasma insulin levels following i.p. injection of glucose compared to WT mice. This increase in GSIS in GV KO mice was associated with a significant increase in pancreatic islet size and number of proliferating cells in ß-islets compared to WT mice. CONCLUSIONS: Deficiency of GV sPLA2 results in diminished GSIS in isolated pancreatic beta-cells. However, the reduced GSIS in islets lacking GV sPLA2 appears to be compensated by increased islet mass in GV KO mice.


Assuntos
Fosfolipases A2 do Grupo V/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dinoprostona/biossíntese , Glucose/farmacologia , Teste de Tolerância a Glucose , Fosfolipases A2 do Grupo V/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Inativação Induzido por RNA
10.
Arterioscler Thromb Vasc Biol ; 35(5): 1156-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25745063

RESUMO

OBJECTIVE: Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS: Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 µg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS: Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Proteína Amiloide A Sérica/deficiência , Animais , Aneurisma da Aorta Abdominal/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Elastina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 34(2): 255-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265416

RESUMO

OBJECTIVE: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS: The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.


Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteína Amiloide A Sérica/deficiência , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/genética , Fatores de Tempo , Triglicerídeos/sangue
12.
J Lipids ; 2013: 283486, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431457

RESUMO

Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with (3)H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. (3)H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of (3)H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived (3)H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.

13.
J Lipid Res ; 51(11): 3117-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20667817

RESUMO

Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.


Assuntos
Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Fígado/metabolismo , Masculino , Camundongos , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA