Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 45: 103890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981223

RESUMO

BACKGROUND: Radiotherapy and photodynamic therapy are the methods of cancer treatment. Although one limitation of photodynamic therapy (PDT) is the limited penetration depth of light through tissue, using X-rays does not have this restriction. Self-lighting nanoparticles can convert X-rays into UV/visible. This study focuses on a newly designed nanostructure containing mesoporous silica nanoparticles (MSN), titanium dioxide nanoparticles (TiO2, anatase grade), and protoporphyrin IX (PpIX) as a photosensitizer to overcome the limitations of photodynamic therapy. METHODS: After the synthesis and characterization of Ti-MSN/PpIX@PVP nanostructure, two ROSes (OH* and 1O2) were measured when the nanostructures were irradiated with 100 kV and 6 MV photons. The toxicity of Ti-MSN/PpIX@PVP nanostructure in presence and absence of radiation was investigated on DFW and HT-29 cell lines. The in-vitro experiments were analyzed using the MTT assay and colony count assay. Finally, the effect of light exposure in the presence of Ti-MSN/PpIX@PVP nanostructure on the two cell lines was studied. The in-vitro studies were evaluated using the Synergism Index (Syn) and Dose Enhancement Factor (DEF). RESULTS: Based on the FESEM (field emission scanning electron Microscopy) images and DLS (dynamic light scattering) measurements, the size of Ti-MSN/PpIX nanostructure was determined as (35.2 nm) and (168.4 nm), respectively. Based on the spectrofluorimetry results, 100 kV photons produced more ROSes than 6 MV photons. The results of MTT assay and colony formation for X-PDT show Syn >1, except for 100 kV photons for HT-29 cell line. The nanostructure also reduced colony formation induced by X-PDT more effectively when irradiated by 100 kV photons on DFW cells. The results obtained from conventional PDT showed that the ED 50 of the HT-29 cell line was 6 times higher than that of the DFW cell line. CONCLUSION: Designing and synthesizing Ti-MSN/PpIX@PVP nanostructures offer a promising strategy for reducing the current challenges in PDT and for developing and advancing X-PDT as an innovative cancer treatment technique.


Assuntos
Nanopartículas , Fotoquimioterapia , Protoporfirinas , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Raios X , Fluorescência , Linhagem Celular Tumoral , Nanopartículas/química
2.
Photodiagnosis Photodyn Ther ; 35: 102408, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34171459

RESUMO

BACKGROUND: Cold Atmospheric Plasma (CAP) has been proposed as a new approach based on its anticancer potential. However, its biological effects in combination with other physical modalities may also enhance efficiency and expand the applicability of the CAP method Photodynamic Therapy (PDT) may be improved by the use of indocyanine green (ICG) photosensitizer with absorption wavelength in the near infrared region to allow for deeper treatment depth.. In this study, the effectiveness of cold atmospheric helium plasma (He-CAP) as a pretreatment on the efficiency of ICG mediated PDT was investigated. METHODS AND MATERIAL: First, toxicity of different concentrations of ICG on HT-29 and U-87MG cell lines was examined for 24 h. IC10 and IC30 of ICG were determined and then cells were treated with this ICG concentrations with different plasma radiation doses and light exposures for 48 h. Finally, MTT assay was performed for all treatment groups. The experiments were repeated at least 4 times at each group for two cell lines, separately. In order to compare the results, several indicators such as treatment efficiency, synergistic ratio, and the amount of optical exposure required for 50% cell death (ED50) were also defined. Finally, SPSS 20 software is used for statistical analysis of data. RESULTS: Pretreatment with CAP could significantly reduce cell survival in both cell lines (P<0.05). Also concentrations, irradiation time with CAP, and appropriate light exposure in both cell lines increased therapeutic efficiency compared to either treatment alone (P<0.05). While increasing the efficiency of photodynamic therapy varied between the two cell lines, the improvement in the PDT process was demonstrated by pretreatment with CAP. CONCLUSION: Synergistic effect in the cell death with PDT were observed following He-CAP treatment and the results indicated that pretreatment with He-CAP improves the efficiency of photodynamic therapy.


Assuntos
Glioblastoma , Fotoquimioterapia , Gases em Plasma , Linhagem Celular Tumoral , Colo , Glioblastoma/tratamento farmacológico , Humanos , Verde de Indocianina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Gases em Plasma/farmacologia
3.
J Cancer Res Ther ; 15(1): 237-244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880784

RESUMO

AIM: The aim of this study is to evaluate soft-tissue composition effect on dose distribution for various soft tissues in radiotherapy with a 6 MV photon beam of a medical linac. BACKGROUND: The compositions of various soft tissues are different which could affect dose calculations. MATERIALS AND METHODS: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component), and soft tissue (4-component). The tissue-equivalent materials included water, A-150 tissue equivalent plastic and perspex. Photon dose relative to dose in 9-component soft tissue at various depths on the beam's central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including *F8, F6, and *F4. RESULTS: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but differ with the *F8 tally. CONCLUSIONS: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.


Assuntos
Aceleradores de Partículas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação
4.
Contemp Oncol (Pozn) ; 20(2): 137-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27358592

RESUMO

AIM OF THE STUDY: Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. MATERIAL AND METHODS: Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. RESULTS: Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution.

5.
Australas Phys Eng Sci Med ; 37(3): 535-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24964872

RESUMO

Skin dose assessment for radiotherapy patients is important to ensure that the dose received by skin is not excessive and does not cause skin reactions. Immobilizing casts may have a buildup effect, and can enhance the skin dose. This study has quantified changes to the surface dose as a result of head and neck immobilizing casts. Medtech and Renfu casts were stretched on the head of an Alderson Rando-Phantom. Irradiation was performed using 6 and 15 MV X-rays, and surface dose was measured by thermoluminescence dosimeters. In the case of 15MV photons, immobilizing casts had no effect on the surface dose. However, the mean surface dose increase reached up to 20 % when 6MV X-rays were applied. Radiation incidence angle, thickness, and meshed pattern of the casts affected the quantity of dose enhancement. For vertical beams, the surface dose increase was more than tangential beams, and when doses of the points under different areas of the casts were analysed separately, results showed that only doses of the points under the thick area had been changed. Doses of the points under the thin area and those within the holes were identical to the same points without immobilizing casts. Higher dose which was incurred due to application of immobilizing casts (20 %) would not affect the quality of life and treatment of patients whose head and neck are treated. Therefore, the benefits of head and neck thermoplastic casts are more than their detriments. However, producing thinner casts with larger holes may reduce the dose enhancement effect.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização , Pele/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA