Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251113

RESUMO

We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton-plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations of dye (Rhodamine 590, Rh590) in the polymer (Poly(methyl methacrylate), PMMA). At the same time, highly unusual multi-segment "staircase-like" dispersion curves were observed at extra-large dye concentrations, also in agreement with the simple theoretical model predicting large, small, and negative group velocities featured by different polariton branches. In a separate experiment, we measured angular dependent emission of Rh590 dye and obtained the dispersion curves consisting of two branches, one nearly resembling the SPP dispersion found in reflection and the second one almost horizontal. The results of our study pave the road to unparalleled fundamental science and future applications of weak and strong light-matter interactions.

2.
Acc Chem Res ; 56(11): 1350-1357, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255175

RESUMO

ConspectusPlasmonic nanolayers and laminar metallic/dielectric multilayers were originally developed for optical cloaking applications and lensing applications that could potentially image objects whose size was below the diffraction limit. These assemblies were initially formed from gold or silver nanorods grown within an alumina mesh. However, more recently, assemblies with similar properties have also been prepared by sequential thin-layer deposition of alternating layers of gold and magnesium fluoride (MgF2). These metal/dielectric composite materials enable control of the dielectric constant in the directions perpendicular to the layers and balance the real and imaginary dielectric constants of the assembly such that the speed and the amplitude of the waves traveling through the assembly are not attenuated.In this Account, we will also focus on a few of the applications ranging from surface wetting to fluorescence quenching to enhancement of photochemical reactions. First, we will share an introduction to processes used to create these materials, which are combinations of low refractive index metals and transparent higher index materials arranged in a scalable repeating fashion. Two fabrication methods were employed: an electrochemical deposition of Ag nanorods into an anodized alumina matrix which produced materials with an anisotropic negative refractive index material within the plane of the film and lamellar metal/dielectric layers in which the negative index perpendicular to the growth direction. These alternating layers of plasmonic metals and dielectric materials were ultimately chosen to prepare films for further testing, because of their relative ease of fabrication. We will continue with a discussion of a few of the applications of both of these nonlocal dielectric composite materials including more specialized plasmonic, composite, and hyperbolic metamaterials including fluorescence quenching, photochemical reactions, and surface wetting. In each of these applications, the unique response caused by the enhancement of the electric field and the interface between hyperbolic materials and plasmonic materials as they interact photophysically with their near neighbors is presented. In each of the applications, the enhanced electric field extends from the composite substrate layer to interact with its near neighbors and beyond. The presence of this extended interaction can be observed in the form of decreased emission lifetime, enhancement of photochemical reaction rates, and changes in the surface energies measured by contact angle goniometry. In this Account, all of these situations will be addressed. Finally, we will conclude with a summary and vision for the future as well as a discussion of the unique challenges and opportunities available as research active faculty at an HBCU.

3.
Chirality ; 34(12): 1503-1514, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36300866

RESUMO

Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.


Assuntos
Nanopartículas , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Cisteína , Estereoisomerismo , Nanopartículas/química
4.
Sci Rep ; 11(1): 1795, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469054

RESUMO

We have studied optical properties of single-layer and multi-fold nanoporous gold leaf (NPGL) metamaterials and observed highly unusual transmission spectra composed of two well-resolved peaks. We explain this phenomenon in terms of a surface plasmon absorption band positioned on the top of a broader transmission band, the latter being characteristic of both homogeneous "solid" and inhomogeneous "diluted" Au films. The transmission spectra of NPGL metamaterials were shown to be controlled by external dielectric environments, e.g. water and applied voltage in an electrochemical cell. This paves the road to numerous functionalities of the studied tunable and active metamaterials, including control of spontaneous emission, energy transfer and many others.

5.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120972

RESUMO

We have studied emission kinetics of HITC laser dye on top of glass, smooth Au films, and randomly structured porous Au nanofoams. The observed concentration quenching of luminescence of highly concentrated dye on top of glass (energy transfer to acceptors) and the inhibition of the concentration quenching in vicinity of smooth Au films were in accord with our recent findings. Intriguingly, the emission kinetics recorded in different local spots of the Au nanofoam samples had a spread of the decay rates, which was large at low dye concentrations and became narrower with increase of the dye concentration. We infer that in different subvolumes of Au nanofoams, HITC molecules are coupled to the nanofoams weaker or stronger. The inhibition of the concentration quenching in Au nanofoams was stronger than on top of smooth Au films. This was true for all weakly and strongly coupled subvolumes contributing to the spread of the emission kinetics. The experimental observations were explained using theoretical model accounting for change in the Förster radius caused by the strong energy transfer to metal.

6.
Nano Lett ; 19(2): 1015-1022, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30605616

RESUMO

Mie-resonant high-index dielectric nanoparticles and metasurfaces have been suggested as a viable platform for enhancing both electric and magnetic dipole transitions of fluorescent emitters. While the enhancement of the electric dipole transitions by such dielectric nanoparticles has been demonstrated experimentally, the case of magnetic-dipole transitions remains largely unexplored. Here, we study the enhancement of spontaneous emission of Eu3+ ions, featuring both electric and magnetic-dominated dipole transitions, by dielectric metasurfaces composed of Mie-resonant silicon nanocylinders. By coating the metasurfaces with a layer of an Eu3+ doped polymer, we observe an enhancement of the Eu3+ emission associated with the electric (at 610 nm) and magnetic-dominated (at 590 nm) dipole transitions. The enhancement factor depends systematically on the spectral proximity of the atomic transitions to the Mie resonances as well as their multipolar order, both controlled by the nanocylinder size. Importantly, the branching ratio of emission via the electric or magnetic transition channel can be modified by carefully designing the metasurface, where the magnetic dipole transition is enhanced more than the electric transition for cylinders with radii of about 130 nm. We confirm our observations by numerical simulations based on the reciprocity principle. Our results open new opportunities for bright nanoscale light sources based on magnetic transitions.

8.
Nat Mater ; 17(2): 116-117, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31745272
12.
Opt Lett ; 40(8): 1659-62, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872041

RESUMO

We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions.

13.
Nat Nanotechnol ; 9(6): 414-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24859814
14.
Opt Express ; 21(12): 14895-7, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787677

RESUMO

This special issue presents a cross-section of recent progress in the rapidly developing area of optics of hyperbolic metamaterials.


Assuntos
Anisotropia , Manufaturas , Refratometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA