Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 1(11): 2070-2079, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34841418

RESUMO

Activation entropy (ΔS ‡) is not normally considered the main factor in determining the reactivity of unimolecular reactions. Here, we report that the intramolecular degradation of six-membered ring compounds is mainly determined by the ΔS ‡, which is strongly influenced by the ring-flipping motion and substituent geometry. Starting from the unique difference between the pH-dependent degradation kinetics of geometric isomers of 1,2-cyclohexanecarboxylic acid amide (1,2-CHCAA), where only the cis isomer can readily degrade under weakly acidic conditions (pH < 5.5), we found that the difference originated from the large difference in ΔS ‡ of 16.02 cal·mol-1·K-1. While cis-1,2-CHCAA maintains a preference for the classical chair cyclohexane conformation, trans-1,2-CHCAA shows dynamic interconversion between the chair and twisted boat conformations, which was supported by both MD simulations and VT-NMR analysis. Steric repulsion between the bulky 1,2-substituents of the trans isomer is one of the main reasons for the reduced energy barrier between ring conformations that facilitates dynamic ring inversion motions. Consequently, the more dynamic trans isomer exhibits much a larger loss in entropy during the activation process due to the prepositioning of the reactant than the cis isomer, and the pH-dependent degradation of the trans isomer is effectively suppressed. When the ring inversion motion is inhibited by an additional methyl substituent on the cyclohexane ring, the pH degradability can be dramatically enhanced for even the trans isomer. This study shows a unique example in which spatial arrangement and dynamic properties can strongly influence molecular reactivity in unimolecular reactions, and it will be helpful for the future design of a reactive structure depending on dynamic conformational changes.

2.
ACS Appl Mater Interfaces ; 12(9): 10839-10851, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043876

RESUMO

Platinum ditelluride (PtTe2) is an emerging semimetallic two-dimensional (2D) transition-metal dichalcogenide (TMDC) crystal with intriguing band structures and unusual topological properties. Despite much devoted efforts, scalable and controllable synthesis of large-area 2D PtTe2 with well-defined layer orientation has not been established, leaving its projected structure-property relationship largely unclarified. Herein, we report a scalable low-temperature growth of 2D PtTe2 layers on an area greater than a few square centimeters by reacting Pt thin films of controlled thickness with vaporized tellurium at 400 °C. We systematically investigated their thickness-dependent 2D layer orientation as well as its correlated electrical conductivity and surface property. We unveil that 2D PtTe2 layers undergo three distinct growth mode transitions, i.e., horizontally aligned holey layers, continuous layer-by-layer lateral growth, and horizontal-to-vertical layer transition. This growth transition is a consequence of competing thermodynamic and kinetic factors dictated by accumulating internal strain, analogous to the transition of Frank-van der Merwe (FM) to Stranski-Krastanov (SK) growth in epitaxial thin-film models. The exclusive role of the strain on dictating 2D layer orientation has been quantitatively verified by the transmission electron microscopy (TEM) strain mapping analysis. These centimeter-scale 2D PtTe2 layers exhibit layer orientation tunable metallic transports yielding the highest value of ∼1.7 × 106 S/m at a certain critical thickness, supported by a combined verification of density functional theory (DFT) and electrical measurements. Moreover, they show intrinsically high hydrophobicity manifested by the water contact angle (WCA) value up to ∼117°, which is the highest among all reported 2D TMDCs of comparable dimensions and geometries. Accordingly, this study confirms the high material quality of these emerging large-area 2D PtTe2 layers, projecting vast opportunities employing their tunable layer morphology and semimetallic properties from investigations of novel quantum phenomena to applications in electrocatalysis.

3.
Angew Chem Int Ed Engl ; 58(47): 16764-16769, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31339216

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is one of the most well-known redox cofactors carrying electrons. Now, it is reported that the intrinsically charged NAD+ motif can serve as an active electrode in electrochemical lithium cells. By anchoring the NAD+ motif by the anion incorporation, redox activity of the NAD+ is successfully implemented in conventional batteries, exhibiting the average voltage of 2.3 V. The operating voltage and capacity are tunable by altering the anchoring anion species without modifying the redox center itself. This work not only demonstrates the redox capability of NAD+ , but also suggests that anchoring the charged molecules with anion incorporation is a viable new approach to exploit various charged biological cofactors in rechargeable battery systems.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletrodos , Lítio/química , Niacinamida/química , Oxirredução
4.
ACS Appl Mater Interfaces ; 11(14): 13598-13607, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30854845

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides (2D TMDs) in the form of MX2 (M: transition metal, X: chalcogen) exhibit intrinsically anisotropic layered crystallinity wherein their material properties are determined by constituting M and X elements. 2D platinum diselenide (2D PtSe2) is a relatively unexplored class of 2D TMDs with noble-metal Pt as M, offering distinct advantages over conventional 2D TMDs such as higher carrier mobility and lower growth temperatures. Despite the projected promise, much of its fundamental structural and electrical properties and their interrelation have not been clarified, and so its full technological potential remains mostly unexplored. In this work, we investigate the structural evolution of large-area chemical vapor deposition (CVD)-grown 2D PtSe2 layers of tailored morphology and clarify its influence on resulting electrical properties. Specifically, we unveil the coupled transition of structural-electrical properties in 2D PtSe2 layers grown at a low temperature (i.e., 400 °C). The layer orientation of 2D PtSe2 grown by the CVD selenization of seed Pt films exhibits horizontal-to-vertical transition with increasing Pt thickness. While vertically aligned 2D PtSe2 layers present metallic transports, field-effect-transistor gate responses were observed with thin horizontally aligned 2D PtSe2 layers prepared with Pt of small thickness. Density functional theory calculation identifies the electronic structures of 2D PtSe2 layers undergoing the transition of horizontal-to-vertical layer orientation, further confirming the presence of this uniquely coupled structural-electrical transition. The advantage of low-temperature growth was further demonstrated by directly growing 2D PtSe2 layers of controlled orientation on polyimide polymeric substrates and fabricating their Kirigami structures, further strengthening the application potential of this material. Discussions on the growth mechanism behind the horizontal-to-vertical 2D layer transition are also presented.

5.
Phys Chem Chem Phys ; 21(13): 6790-6800, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30735216

RESUMO

We investigate the charging phenomena of an electric double layer capacitor (EDLC) by conducting both equilibrium and non-equilibrium molecular dynamics (MD) simulations. A graphene electrode and 1-ethyl-3-methylimidazolium thiocyanate ([EMIM]+[SCN]-) ionic liquid were used as a system for the EDLC. We clarify the ionic layer structure and show that an abrupt change of the ionic layers leads to a high differential capacitance of the EDLC. The charging simulations reveal that the charging dynamics of the EDLC is highly dependent on the rearrangement of the ionic layer structure. Particularly, the electrode charge during the charging process is consistent with the perpendicular displacement of ionic liquid molecules. From this property, we analyze the contribution of each molecular ion to the electrode charge stored during charging. Charging of the EDLC is largely dependent on the desorption of the co-ions from the electrode rather than the adsorption of the counter-ions. In addition, the contribution of bulk ions to the charge stored in the EDLC is as important as that of ions adjacent to the electrode surface contrary to the conventional viewpoint. From these results, we identify the charging mechanism of the EDLC and discuss the relevance to experimental results. Our findings in the present study are expected to play an important role in designing an efficient EDLC with a novel perspective on the charging of the EDLC.

6.
Nanoscale ; 10(37): 17525-17533, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30211427

RESUMO

The intrinsically anisotropic crystallinity of two-dimensional (2D) transition metal dichalcogenide (2D TMD) layers enables a variety of intriguing material properties which strongly depend on the physical orientation of constituent 2D layers. For instance, 2D TMDs with vertically-aligned layers exhibit numerous dangling bonds on their 2D layer edge sites predominantly exposed on the surface, projecting significantly improved physical and/or chemical adsorption capability compared to their horizontally-oriented 2D layer counterparts. Such property advantages can be further promoted as far as the material can be integrated onto unconventional substrates of tailored geometry/functionality, offering vast opportunities for a wide range of applications which demand enhanced surface area/reactivity and mechanical flexibility. Herein, we report a new form of 2D TMDs, i.e., three-dimensionally ordered 2D molybdenum disulfide (2D MoS2) with vertically-aligned layers integrated on elastomeric substrates and explore their tunable multi-functionalities and technological promise. We grew large-scale (>2 cm2) vertically-aligned 2D MoS2 layers using a three-dimensionally patterned silicon dioxide (SiO2) template and directly transferred/integrated them onto flexible polydimethylsiloxane (PDMS) substrates by taking advantage of the distinguishable water-wettability of 2D MoS2vs. SiO2. The excellent structural integrity of the integrated vertical 2D MoS2 layers was confirmed by extensive spectroscopy/microscopy characterization. In addition, the stretch-driven unique tunability of their optical and surface properties was also examined. Moreover, we applied this material for flexible humidity sensing and identified significantly improved (>10 times) sensitivity over conventionally-designed horizontal 2D MoS2 layers, further confirming their high potential for unconventional flexible technologies.

7.
Chemistry ; 23(69): 17566-17575, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925104

RESUMO

The nature of hydrated protons formed at water/metal interfaces is one of the most intriguing research questions in the field of interfacial chemistry. We prepared coadsorption layers of hydrogen and water on a Pt(111) surface in ultrahigh vacuum and studied the ionization of adsorbed hydrogen atoms to H+ ions by employing a combined experimental and theoretical approach. Spectroscopic evidence obtained by mass spectrometry and reflection absorption infrared spectroscopy as well as corresponding density functional theory calculations consistently show that adsorbed hydrogen atoms ionize into multiply hydrated proton species (H5 O2+ , H7 O3+ , and H9 O4+ ) on the surface, rather than H3 O+ . Then, upon addition of a water overlayer, the metal-bound hydrated protons spontaneously evolve into three-dimensional fully hydrated proton structures through proton transfer along the water overlayer. The stability of hydrated protons on the Pt surface and their bulk dissolution behavior suggest the possibility that surface hydrated protons are a key intermediate in electrochemical interconversion between adsorbed H atoms and H+ (aq) in water electrolysis and hydrogen evolution reactions.

8.
J Chem Phys ; 147(8): 084504, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863539

RESUMO

We investigate the dimensional dependence of dynamical fluctuations related to dynamic heterogeneity in supercooled liquid systems using kinetically constrained models. The d-dimensional spin-facilitated East model with embedded probe particles is used as a representative super-Arrhenius glass forming system. We examine the existence of an upper critical dimension in this model by considering decoupling of transport rates through an effective fractional Stokes-Einstein relation, D∼τ-1+ω, with D and τ the diffusion constant of the probe particle and the relaxation time of the model liquid, respectively, and where ω>0 encodes the breakdown of the standard Stokes-Einstein relation. To the extent that decoupling indicates non-mean-field behavior, our simulations suggest that the East model has an upper critical dimension at least above d = 10 and argue that it may actually be infinite. This result is due to the existence of hierarchical dynamics in the East model in any finite dimension. We discuss the relevance of these results for studies of decoupling in high dimensional atomistic models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA