Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(2): pgad004, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36874277

RESUMO

Since the 1930s, California's Sierra Nevada has warmed by an average of 1.2 ∘ C. Warming directly primes forests for easier wildfire ignition, but the change in climate also affects vegetation species composition. Different types of vegetation support unique fire regimes with distinct probabilities of catastrophic wildfire, and anticipating vegetation transitions is an important but undervalued component of long-term wildfire management and adaptation. Vegetation transitions are more likely where the climate has become unsuitable but the species composition remains static. This vegetation climate mismatch (VCM) can result in vegetation conversions, particularly after a disturbance like wildfire. Here we produce estimates of VCM within conifer-dominated forests in the Sierra Nevada. Observations from the 1930s Wieslander Survey provide a foundation for characterizing the historical relationship between Sierra Nevada vegetation and climate before the onset of recent, rapid climate change. Based on comparing the historical climatic niche to the modern distribution of conifers and climate, ∼19.5% of modern Sierra Nevada coniferous forests are experiencing VCM, 95% of which is below an elevation of 2356 m. We found that these VCM estimates carry empirical consequences: likelihood of type-conversion increased by 9.2% for every 10% decrease in habitat suitability. Maps of Sierra Nevada VCM can help guide long-term land management decisions by distinguishing areas likely to transition from those expected to remain stable in the near future. This can help direct limited resources to their most effective uses-whether it be protecting land or managing vegetation transitions-in the effort to maintain biodiversity, ecosystem services, and public health in the Sierra Nevada.

2.
Science ; 361(6405): 920-923, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166491

RESUMO

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Assuntos
Biodiversidade , Mudança Climática
3.
Environ Microbiol ; 12(6): 1578-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20236161

RESUMO

Under water-limiting conditions Pseudomonas putida produces the exopolysaccharide alginate, which influences biofilm development and facilitates maintaining a hydrated microenvironment. Since alginate is a minor biofilm matrix component it is important to determine whether alginate production occurs by all or a subset of residents, and when and to what extent cells contribute to alginate production. To address these questions we employed stable and unstable fluorescent reporters to measure alginate biosynthesis (algD) operon expression and metabolic activity in vivo quantitatively by flow cytometry and visually by microscopy. Here we report that during growth under water-limiting conditions and when biofilms become dehydrated most residents transiently express the alginate biosynthesis genes leading to distinct spatial patterns as the biofilm ages. Transient alginate gene expression was not a consequence of decreased metabolic activity, since metabolic reporters were still expressed, nor was it likely due to transient cytosolic availability of the alternative sigma factor AlgT, based on qRT-PCR. Our findings also indicate that one or more biofilm attribute, other than alginate, provides protection from desiccation stress. Collectively, our findings suggest that differentiated cells dedicated to alginate production are not part of the P. putida biofilm lifestyle under water-limiting conditions. Alternatively, P. putida biofilm cells may be responding to their own local environment, producing alginate because of the fitness advantage it confers under those particular conditions.


Assuntos
Adaptação Fisiológica/genética , Alginatos/metabolismo , Biofilmes , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida , Água/metabolismo , Animais , Sequência de Bases , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA