Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Genes Nutr ; 15(1): 21, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243154

RESUMO

BACKGROUND: Increased adipogenesis and altered adipocyte function contribute to the development of obesity and associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis. RESULTS: Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and 0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the gene expression, but 666 regions were positively correlated to the gene expression. CONCLUSIONS: Our studies demonstrate that DNA methylation regulates or marks the transformation of morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes (as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.

2.
Sci Rep ; 6: 28851, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385551

RESUMO

The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.


Assuntos
Adipócitos/citologia , Adipogenia , Biologia Computacional/métodos , Biologia de Sistemas , Diferenciação Celular , Simulação por Computador , Regulação da Expressão Gênica , Humanos , Internet , Fatores de Tempo , Transcriptoma
3.
Metabolites ; 5(2): 364-85, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26087138

RESUMO

Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

4.
Metabolomics ; 11(3): 529-544, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972768

RESUMO

The development of obesity is becoming an international problem and the role of fructose is unclear. Studies using liver tissue and hepatocytes have contributed to the understanding of fructose metabolism. Excess fructose consumption also affects extra hepatic tissues including adipose tissue. The effects of fructose on human adipocytes are not yet fully characterized, although in vivo studies have noted increased adiposity and weight gain in response to fructose sweetened-beverages. In order to understand and predict the metabolic responses of adipocytes to fructose, this study examined differentiating and differentiated human adipocytes in culture, exposed to a range of fructose concentrations equivalent to that reported in blood after consuming fructose. A stable isotope based dynamic profiling method using [U-13C6]-d-fructose tracer was used to examine the metabolism and fate of fructose. A targeted stable isotope tracer fate association method was used to analyze metabolic fluxes and flux surrogates with exposure to escalating fructose concentration. This study demonstrated that fructose stimulates anabolic processes in adipocytes robustly, including glutamate and de novo fatty acid synthesis. Furthermore, fructose also augments the release of free palmitate from fully differentiated adipocytes. These results imply that in the presence of fructose, the metabolic response of adipocytes in culture is altered in a dose dependent manner, particularly favoring increased glutamate and fatty acid synthesis and release, warranting further in vivo studies.

5.
Reprod Toxicol ; 53: 131-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25929818

RESUMO

The mouse Embryonic Stem cell Test (EST) using cardiomyocyte differentiation is a promising in vitro assay for detecting potential embryotoxicity; however, the addition of another differentiation endpoint, such as osteoblasts, may improve the predictive value of the test. A number of variables such as culture conditions and starting cell number were investigated. A 14 day direct plating method of D3 mouse embryonic stem cells (mESCs) was used to test the predictivity of osteoblast differentiation as an endpoint in the EST. Twelve compounds were tested using the prediction model developed in the ECVAM validation study. Eight of the compounds selected from the EST validation study served as model compounds; four additional compounds known to produce skeletal defects were also tested. Our results indicate comparable chemical classification between the validated cardiomyocyte endpoint and the osteoblast endpoint. These results suggest that differentiation to osteoblasts may provide confirmatory information in predicting embryotoxicity.


Assuntos
Osteoblastos/efeitos dos fármacos , Teratogênicos/toxicidade , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Hep G2 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Reprodutibilidade dos Testes
6.
Toxicol Appl Pharmacol ; 262(2): 117-23, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22726953

RESUMO

Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 µM TCS), but not with low-concentration treatments (≤ 2.5 µM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 µM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood.


Assuntos
Adipogenia/efeitos dos fármacos , Anti-Infecciosos Locais/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Triclosan/toxicidade , Adiponectina/genética , Adiponectina/metabolismo , Compostos Azo/química , Relação Dose-Resposta a Droga , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Metab Syndr Relat Disord ; 10(4): 297-306, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22545589

RESUMO

The endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity. Studies examining human adipose tissue have indicated that there is an increase in the ER stress transcript HSPA5 with increased body mass index (BMI). However, it is not established whether ER stress results in changes in adiponectin levels or multimerization in human adipocytes. We examined whether the induction of ER stress using tunicamycin, thapsigargin, or palmitate alters the messenger RNA (mRNA) and protein expression of adiponectin and the mRNA expression of chaperones ERP44 and ERO1 in adult-derived human adipocyte stem (ADHAS) cells. ER stress was measured using key indicators of ER stress-HSPA5, ERN1, CHOP, and GADD34, as well as changes in eIF2α phosphorylation. Because ER stress is suggested to be the proximal cause of inflammation in adipocytes, we further examined the change in inflammatory status by quantitating the change in Iκß-α protein following the induction of ER stress. Our studies indicate that: (1) ER stress markers were increased to a higher degree using tunicamycin or thapsigargin compared to palmitate; (2) ER stress significantly decreased adiponectin mRNA in response to tunicamycin and thapsigargin, but palmitate did not decrease adiponectin mRNA levels. In all three instances, the induction of ER stress was accompanied by a decrease in adiponectin protein as well as adiponectin multimerization. All three inducers of ER stress increased tumor necrosis factor-α (TNF-α) mRNA and decreased Iκß-α protein in adipocytes. The data suggest that ER stress modifies adiponectin secretion and induces inflammation in ADHAS cells.


Assuntos
Adipócitos/citologia , Adiponectina/biossíntese , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Inflamação/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Índice de Massa Corporal , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Humanos , Ácido Palmítico/metabolismo , Fosforilação , RNA/metabolismo , RNA Mensageiro/metabolismo , Células-Tronco/citologia , Tapsigargina/farmacologia , Tunicamicina/farmacologia
8.
J Nutr Biochem ; 23(8): 885-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21852085

RESUMO

Macrophages are an important component of muscle where they are involved in complex processes such as repair, regeneration and hypertrophy. We recently reported that macrophage numbers increase in the muscle of obese patients, suggesting that muscle-resident macrophages could be involved in the development of muscle insulin resistance that is associated with obesity. Coculture of activated macrophages with human muscle cells impairs insulin signaling and induces atrophy signaling pathways in the human muscle cells; this is exacerbated by the addition of palmitic acid. In this study, we tested the hypothesis that docosahexaenoic acid (DHA), a polyunsaturated fatty acid that has anti-inflammatory properties, would have the opposite effect of palmitic acid on muscle-macrophage cocultures. Surprisingly, DHA did not stimulate insulin signaling in human muscle myotubes that were cocultured with fibroblasts or macrophages. However, DHA inhibited Fn14, the TNF-like weak inducer of apoptosis receptor that increases the expression of the muscle-specific ubiquitin ligase MuRF-1 (muscle ring-finger protein-1). DHA treatment also increased the apparent molecular mass of MuRF-1 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggesting that DHA causes MuRF-1 to be posttranslationally modified. In conclusion, these results suggest that DHA may have a beneficial effect on muscle mass in humans by inhibiting the induction of Fn14 by infiltrating macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Diferenciação Celular , Ácidos Docosa-Hexaenoicos/farmacologia , Macrófagos/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/metabolismo , Adulto , Apoptose , Atrofia/metabolismo , Técnicas de Cocultura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Resistência à Insulina , Macrófagos/citologia , Macrófagos/metabolismo , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Ácido Palmítico/farmacologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais , Receptor de TWEAK , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
9.
Am J Pathol ; 177(4): 2055-66, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20829439

RESUMO

Rhabdomyosarcoma is a primitive neoplasm with a poorly understood etiology that exhibits features of fetal skeletal muscle. It represents the most frequent malignant soft tissue sarcoma affecting the pediatric population and is often treated very aggressively. Embryonal rhabdomyosarcoma (ERMS) and alveolar rhabdomyosarcoma constitute the two major subtypes and exhibit different molecular features. We investigated one potential molecular basis for ERMS by using cells derived from tumors produced in p53(-/-)/c-fos(-/-) mice. This model closely recapitulates the timing, location, molecular markers, and histology seen in human ERMS. A combined chromatin immunoprecipitation/promoter microarray approach was used to identify promoters bound by the c-Jun-containing AP-1 complex in the tumor-derived cells that lacked c-Fos. Identification of the Wnt2 gene and its overexpression in ERMS cells was confirmed in human rhabdomyosarcoma cell lines and prompted further analysis of the Wnt signaling pathway. Contrary to our expectations, the canonical Wnt/ß-catenin signaling pathway was down-regulated in ERMS cells compared with normal myoblasts, and activating this pathway promoted myogenic differentiation. Furthermore, the identification of both survivin and sfrp2 through promoter and expression analyses suggested that increased resistance to apoptosis was associated with the inhibition of the Wnt signaling pathway. These results suggest that altered AP-1 activity that leads to the down-regulation of the Wnt pathway may contribute to the inhibition of myogenic differentiation and resistance to apoptosis in ERMS cases.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes fos/fisiologia , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteínas Wnt/metabolismo , Animais , Apoptose , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Imunoprecipitação da Cromatina , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Camundongos , Camundongos Mutantes , Mioblastos/citologia , Mioblastos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma Embrionário/patologia , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Front Physiol ; 1: 21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21423363

RESUMO

Aging is accompanied by considerable heterogeneity with possible co-expression of differentiation pathways. The present study investigates the interplay between crucial myogenic, adipogenic, and Wnt-related genes orchestrating aged myogenic progenitor differentiation (AMPD) using clonal gene expression profiling in conjunction with Bayesian structure learning (BSL) techniques. The expression of three myogenic regulatory factor genes (Myogenin, Myf-5, MyoD1), four genes involved in regulating adipogenic potential (C/EBPα, DDIT3, FoxC2, PPARγ), and two genes in the Wnt signaling pathway (Lrp5, Wnt5a) known to influence both differentiation programs were determined across 34 clones by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Three control genes were used for normalization of the clonal expression data (18S, GAPDH, and B2M). Constraint-based BSL techniques, namely (a) PC Algorithm, (b) Grow-shrink (GS) algorithm, and (c) Incremental Association Markov Blanket (IAMB) were used to model the functional relationships (FRs) in the form of acyclic networks from the clonal expression profiles. A novel resampling approach that obviates the need for a user-defined confidence threshold is proposed to identify statistically significant FRs at small sample sizes. Interestingly, the resulting acyclic network consisted of FRs corresponding to myogenic, adipogenic, Wnt-related genes and their interaction. A significant number of these FRs were robust to normalization across the three house-keeping genes and the choice of the BSL technique. The results presented elucidate the delicate balance between differentiation pathways (i.e., myogenic as well as adipogenic) and possible cross-talk between pathways in AMPD.

11.
Am J Physiol Endocrinol Metab ; 296(6): E1300-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19336660

RESUMO

Obesity is characterized by adipose tissue expansion as well as macrophage infiltration of adipose tissue. This results in an increase in circulating inflammatory cytokines and nonesterified fatty acids, factors that cause skeletal muscle insulin resistance. Whether obesity also results in skeletal muscle inflammation is not known. In this study, we quantified macrophages immunohistochemically in vastus lateralis biopsies from eight obese and eight lean subjects. Our study demonstrates that macrophages infiltrate skeletal muscle in obesity, and we developed an in vitro system to study this mechanistically. Myoblasts were isolated from vastus lateralis biopsies and differentiated in culture. Coculture of differentiated human myotubes with macrophages in the presence of palmitic acid, to mimic an obese environment, revealed that macrophages in the presence of palmitic acid synergistically augment cytokine and chemokine expression in myotubes, decrease IkappaB-alpha protein expression, increase phosphorylated JNK, decrease phosphorylated Akt, and increase markers of muscle atrophy. These results suggest that macrophages alter the inflammatory state of muscle cells in an obese milieu, inhibiting insulin signaling. Thus in obesity both adipose tissue and skeletal muscle inflammation may contribute to insulin resistance.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina/imunologia , Macrófagos/imunologia , Mioblastos Esqueléticos/imunologia , Miosite/imunologia , Obesidade/imunologia , Adulto , Comunicação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Expressão Gênica/imunologia , Humanos , Insulina/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/imunologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Miosite/metabolismo , Miosite/patologia , Obesidade/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais/imunologia , Adulto Jovem
12.
J Gerontol A Biol Sci Med Sci ; 63(6): 566-79, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18559630

RESUMO

We report an age-dependent increase in nonimmunohematopoietic cells (CD45neg) in regenerating muscle characterized by high stem-cell antigen (Sca-1) expression. In aged regenerating muscle, only 14% of these CD45negSca-1pos cells express MyoD, whereas 82% of CD45negSca-1(pos) cells are MyoDpos in young adult muscle. In vitro, CD45negMyoDnegSca-1pos cells overexpress fibrosis-promoting genes, potentially controlled by Wnt2. The cells are proliferative, nonmyogenic, and nonadipogenic, and arise in clonally derived myoblast cultures from aged mice. MyoDneg Sca-1pos nonmyogenic cells also emerge in C2C12 myoblast cultures at late passage. Both in vitro and in vivo studies suggest that MyoDnegSca-1pos cells from aged muscle are more susceptible to apoptosis than myoblasts, which may contribute to depletion of the satellite cell pool. Thus, with age, a subset of myoblasts takes on an altered phenotype, which is marked by high Sca-1 expression. These cells do not participate in muscle regeneration, and instead may contribute to muscle fibrosis in aged muscle.


Assuntos
Envelhecimento/patologia , Antígenos Ly/análise , Proteínas de Membrana/análise , Músculo Esquelético/patologia , Animais , Células Cultivadas , Feminino , Fibrose , Antígenos Comuns de Leucócito/análise , Camundongos , Camundongos Endogâmicos DBA , Músculo Esquelético/fisiologia , Proteína MyoD , Regeneração/fisiologia
13.
Diabetes ; 57(2): 432-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18057090

RESUMO

OBJECTIVE: We examined the relationship between the expression of thrombospondin (TSP)1, an antiangiogenic factor and regulator of transforming growth factor-beta activity, obesity, adipose inflammation, and insulin resistance. RESEARCH DESIGN AND METHODS: TSP1 gene expression was quantified in subcutaneous adipose tissue (SAT) of 86 nondiabetic subjects covering a wide range of BMI and insulin sensitivity, from visceral adipose (VAT) and SAT from 14 surgical patients and from 38 subjects with impaired glucose tolerance randomized to receive either pioglitazone or metformin for 10 weeks. An adipocyte culture system was also used to assess the effects of pioglitazone and coculture with macrophages on TSP1 gene expression. RESULTS: TSP1 mRNA was significantly associated with obesity (BMI) and insulin resistance (low insulin sensitivity index). Relatively strong positive associations were seen with markers of inflammation, including CD68, macrophage chemoattractant protein-1, and plasminogen activator inhibitor (PAI)-1 mRNA (r >/= 0.46, P = 0.001 for each), that remained significant after controlling for BMI and S(i). However, TSP1 mRNA was preferentially expressed in adipocyte fraction, whereas inflammatory markers predominated in stromal vascular fraction. Coculture of adipocytes and macrophages augmented TSP1 gene expression and secretion from both cell types. Pioglitazone (not metformin) treatment resulted in a 54% decrease (P < 0.04) in adipose TSP gene expression, as did in vitro pioglitazone treatment of adipocytes. CONCLUSIONS: TSP1 is a true adipokine that is highly expressed in obese, insulin-resistant subjects; is highly correlated with adipose inflammation; and is decreased by pioglitazone. TSP1 is an important link between adipocytes and macrophage-driven adipose tissue inflammation and may mediate the elevation of PAI-1 that promotes a prothrombotic state.


Assuntos
Resistência à Insulina , Obesidade/fisiopatologia , Trombospondina 1/genética , Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Macrófagos/fisiologia , Obesidade/genética , RNA Mensageiro/genética , Valores de Referência , Células-Tronco/citologia , Células-Tronco/fisiologia
14.
Aging Cell ; 3(6): 353-61, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15569352

RESUMO

Myogenic progenitors in adult muscle are necessary for the repair, maintenance and hypertrophy of post-mitotic muscle fibers. With age, fat deposition and fibrosis contribute to the decline in the integrity and functional capacity of muscles. In a previous study we reported increased accumulation of lipid in myogenic progenitors obtained from aged mice, accompanied by an up-regulation of genes involved in adipogenic differentiation. The present study was designed to extend our understanding of how aging affects the fate and gene expression profile of myogenic progenitors. Affymetrix murine U74 Genechip analysis was performed using RNA extracted from myogenic progenitors isolated from adult (8-month-old) and aged (24-month-old) DBA/2JNIA mice. The cells from the aged animals exhibited major alterations in the expression level of many genes directly or indirectly involved with the TGFbeta signaling pathway. Our data indicate that with age, myogenic progenitors acquire the paradoxical phenotype of being both TGFbeta activated based on overexpression of TGFbeta-inducible genes, but resistant to the differentiation-inhibiting effects of exogenous TGFbeta. The overexpression of TGFbeta-regulated genes, such as connective tissue growth factor, may play a role in increasing fibrosis in aging muscle.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos DBA , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Músculo Esquelético/citologia , Fenótipo , Células-Tronco/citologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA